
MULTIMEDIA PROJECT

CONCEPT GRAPH APPLICATION

SERGIO GONZÁLEZ

JULY 9, 2008

SUPERVISOR:
PROF. ANTON ELIËNS

VRIJE UNIVERSITEIT AMSTERDAM

Contents

1 Introduction 2

1.1 What is a concept graph? . 2

1.2 Concept Graph Application . 3

2 Basic Concept Graph 4

2.1 ConceptGraphBasic.as . 4

2.2 CharacterHandler.as . 5

2.3 Character.as . 7

2.4 Relation.as . 8

2.5 data.XML . 8

3 Medium Concept Graph 10

3.1 ConceptGraphMedium.as . 10

3.2 CharacterHandler.as . 12

3.3 Character.as . 13

3.4 Relation.as . 14

3.5 data.XML . 14

4 Advanced Concept Graph 16

1

1 Introduction

1.1 What is a concept graph?

Many of you will be probably wondering what a concept graph is and for what it can be used. As
the project is based on it, a definition becomes really necessary.

Wikipedia explains concept mapping is a technique for visualizing the relationships among different
concepts. A concept map is a diagram showing the relationships among concepts. Concepts are
connected with labelled arrows, in a downward-branching hierarchical structure. The relationship
between concepts is articulated in linking phrases, e.g., “gives rise to”, “results in”, “is required
by”, or “contributes to”.

Concept graphs are an easy way to communicate complex ideas. When there is too much informa-
tion to be processed, sometimes is easier to handle if there is a complete visual interface where all
the relations among the concepts are clear and easily accesible. This is the strong point of concept
graphs.

Concept graphs are widely used: brain-storming, summarizing key concepts, instructional design,
increasing meaningful learning, improving language ability, showing hierarchical structures, facili-
tating the creation of shared vision and shared understanding within a team and many more.

Figure 1: Example of a concept graph

This concept graph application tries to create a concept graph with lots of possibilities that can be
fully adapted. All different kinds of information can be shown, such as video, photographs, images
or text. User interface is also very important, so different characteristics such as zoom or drag &
drop are available.

2

1.2 Concept Graph Application

At the beginning, the concept graph application was supposed to be an improved version of other
currently available concept graphs (e.g. http://der-mo.net/relationBrowser/). Most of them were
programmed in old versions of programming languages and they didn’t include some features as
video. Using the latest versions of an open-source programming language was another requirement
for the project.

Flex Action Script 3.0 was a very new version of the programming language and with a lot of
possibilities. This is the reason why this concept graph application has been made using Flex Action
Script 3.0.

Nowadays, concept graphs are very interactive and dinamic thanks to multimedia. This concept
graph application is an example of it. This manual contains all the information and help needed to
adapt the concept graph to your own needs (You will need to download the compiler in case you
want to re-program part of the application)- In order to be easily understandable, three different
examples of three different concept graphs with different features are shown, from the easiest and
simplest one to the most complex and powerful one.

3

2 Basic Concept Graph

The Basic Concept Graph (BCG) is the simplest application. It can be used to understand how the
application works and to start “playing” with the source code.

The concepts are circles filled with different images or photographs. By clicking one character, the
whole graph is redesigned showing the new characters and the relations among them and the clicked
one (relations), and among themselves (subrelations).

The BCG is composed of the following files:

• ConceptGraphBasic.as

• CharacterHandler.as

• Character.as

• Relation.as

• data.xml

2.1 ConceptGraphBasic.as

ConceptGraphBasic.as is the main class. It reads all the information of the characters and rela-
tions from “data.xml”. This information is processed and stored in two arrays (arrayChars and
arrayRelations) and they are sent to the CharacterHandler object (handler). In case of having prob-
lems reading the xml file it will report an error. This class also creates the container where all the
characters will be placed.

The next source code indicates to load the data.xml file:

var loader:URLLoader = new URLLoader();
loader.addEventListener(Event.COMPLETE, handleComplete);
loader.load(new URLRequest("data.xml"));

The information stored about the characters is:

• identification: single name to identify the character by the application. Two characters cannot
have the same identification name.

• name: name to idenfity the character by the user.

• imageURL: link to the character image.

4

This information is stored in the arrayChars.

var charData:Object = new Object();
charData.id = dataCharacter.@id;
charData.name = dataCharacter.@name;
charData.imageURL = dataCharacter.@imageURL;
arrayChars.push(charData);

The information stored about the relations is: who is related (fromID) and to whom is related (toID).
This information is stored as a Relation object in the arrayRelations. The following source code
shows how this is done.

var relation:Relation = new Relation(dataRelation.@fromID,
dataRelation.@toID);

arrayRelations.push(relation);

If the user wants to add more information about the character or the relation, he has to modify the
previous code adding the new fields.

2.2 CharacterHandler.as

This class is the most complex and difficult one to understand. It receives the charData and ar-
rayRelations array from the ConceptGraphicBasic.as. It has to handle all this data to show the
information on the screen. It handles the position and movement of all the characters and it process
the different selections of the users.

The first customizable parameter is the position where the clicked character is going to be placed.
This can be set in the originX and originY variables:

private var originX:uint = 400;
private var originY:uint = 365;

All the characters are shown in a circle shape, while the selected character is in the center of that
circle. The radius of the circle (distance from the center to the first turn) can be set with the radius-
Cirle variable. The distance between the different turns can be set with the distanceBetweenTurns
variable. The size of the character can be set with the radius variable. See figure 2.

private var distanceBetweenTurns:uint = 70;
private var radiusCircle:uint = 100;
private var radius:uint = 50;

5

Figure 2: Green arrow represents radiusCircle, red arrow represents distanceBetweenTurns and blue
arrow represents radius

The function overCharacter shows the bigger character and the Bevel effect when the mouse is over
it, while outCharacter restores the character to its default values. See figure 3.

The function onEnterFrame draws the lines connecting the related characters. The first step is clean-
ing the container of previous lines. Then, we draw the lines to connect the selected character with
the related characters. Finally, we draw the curves to connect the characters with themselves, ac-
cording to the subrelations. Different line widths have been set to distinguish the relations between
the subrelations.

container.graphics.clear();
container.graphics.lineStyle(3);
for (var i:int = 1; i<arrayCharacter.length; i++) {
...
}
container.graphics.lineStyle(1);
for (var j:int = 0; j<subRelation.length; j++) {
...
}

The functions click and checkExistence processes the information of the characters, relations and
subrelations when a new character is clicked.

Finally, the function characterGeometry sets the position of all the characters in the screen when a
new one is clicked. When all the characters don’t fit in the circle, a new turn is created. The number
of characters that fit into the new turn gets bigger and bigger because the radius of the new circle is
also bigger.

6

Figure 3: Mouse out and over the character

The number of characters that we want to be in the first circle can be set with the numCharacters-
FirstTurn. The variable numCharactersFirstTurn cannot be smaller than 3.

The number of characters in each turn gets increased by a power of increaseCharactersFactor.
Recommended values are 2 or 3. The original value is 3. This means that, in the first circle we have
numCharactersFirstTurn characters. In the second turn, we will have: numCharactersFirstTurn +
32. In the third turn there will be: numCharactersFirstTurn + 33, and so on. If the original values
are not modified, we will have 15 characters in the first circle, 23 in the second, 39 in the third, ...

Again, here it is the code to modify these parameters:

private var numCharactersFirstTurn:uint = 15; //Minimum 3
private var increaseCharactersFactor:uint = 3; //2 or 3

2.3 Character.as

Character.as is the class that sets all the information, appearance and movements of the characters.
In this basic application, the only information required to “create” a character is the radius, id and
imageURL.

public function Character (radius:Number, id:String,
imageURL:String):void {

....
}

The function onComplete is executed when the image has been loaded. This function defines the
shape of the character and “fills” it with the image. The default shape of the character is a circle,

7

but it can be changed easily to a rectangle or ellipse. The code to define the shape and fill it with the
image is the following:

graphics.beginBitmapFill(bitmap,matrix);
graphics.drawCircle(0, 0, radius);
graphics.endFill();

Other functions such as graphics.drawEllipse(0, 0, width, height) or graphics.drawRect(0, 0, width,
height) can be used to draw an ellipse or rectangle respectively.

Functions increaseSize and decreaseSize are called by the CharacterHandler when the mouse is
over or out the character respectively.

Finally, the movement of the characters when a new one is clicked is programmed in the onEn-
terFrame function. A realistic and nice movement needed to be used, so a spring-movement was
decided to be used. To customize this movement, to variables can be set: spring and friction. Here
is the code with the default values:

private var spring:Number = 0.3;
private var friction:Number = 0.45;

2.4 Relation.as

Relation.as is a class with a formal description of how a relation is defined. In the basic example we
are using only two attibutes:

• fromID: sets who creates the relation

• toID: sets who is affected by the relation

In more complex applications, where more information about the relation is required, this class will
need to be updated.

2.5 data.XML

The information about the characters and the relations is stored in a XML file. The Extensible
Markup Language (XML) is a general purpose specification for creating custom markup languages
that allows the user to define their own elements.

Here it is a portion of the XML file used in the basic application example:

8

<Example>
<Nodes>
<Person id="one" name="der_mo" imageURL="1.jpg"

linkURL="http://lijit.com/users/der_mo"/>
<Person id="two" name="progressiveLoadingTest" imageURL="2.jpg"

linkURL="" dataURL="moreNodes.xml"/>
<Person id="three" name="grahagre" imageURL="3.jpg"

linkURL="http://getoutfoxed.com/users/grahagre"/>
.......
</Nodes>
<Relations>
<DirectedRelation fromID="one" toID="two"/>
<DirectedRelation fromID="one" toID="three"/>
<DirectedRelation fromID="one" toID="four"/>
.......
</Relations>
</Example>

This file is the most important one to be modified according to the user data to customize the concept
graph. Only modify the data, the structure of the file should be kept as it is.

9

3 Medium Concept Graph

The medium concept graph contains the same features as the Basic Concept Graph, but with some
new characteristics and functions.

In this example, the concept graph relates the famous singers who have collaborated with another
famous singers. The relations have been done randomly, so it does not represent the reality, but it is
enough for the example.

The new features of the Medium Concept Graph, compared with Basic Concept Graph, are the
following:

• Zoom out/in with the wheelmouse to the characters. Very useful when there are too many or
too less characters respectively

• Drag/Drop of the characters, so you can move the concept wherever you want

• Information display with customizable data: name, description, ...

• Possibility of including a video in the information display

The number and name of the classes remains the same as the Basic Concept Graph (except the main
class that is named ConceptGraphMedium). We explain now the new functions and characteristics,
so the user can adapt them to their own.

3.1 ConceptGraphMedium.as

The zoom feature is programmed in the function scaleAt. This function scales the area centered in
originX, originY by a factor scale. This is the definition of the function

public function scaleAt(scale:Number, originX:Number,
originY:Number):void {

The originX and originY are the mouse position, so the zoom area depends on where the mouse is
placed. The scale is the zoomFactor variable, that can be set in the following code:

private var zoomFactor:Number=21/20;

The zoomFactor must be slightly bigger than 1. The bigger it is, the more zoom is applied with the
movement of the mousewheel.

The drag & drop function is very easy to implement. Two functions were create to handle the
MOUSE DOWN event and the MOUSE UP event:

10

private function onMouseDown(ev:Event):void {
container.startDrag();

}
private function onMouseUp(ev:MouseEvent):void {

container.stopDrag();
}

The MOUSE DOWN and the MOUSE UP event are linked to the previous functions by the follow-
ing EventListener:

stage.addEventListener(MouseEvent.MOUSE_DOWN, onMouseDown);
stage.addEventListener(MouseEvent.MOUSE_UP, onMouseUp);

The information display is configured in the setDisplayInfo function. There are two textField that
indicates the name and the description of the selected character. The video is shown below the
textfields. In figure 4 you can see a visual description of the variables. This is the code with the
default values:

private var originInfoY:uint=50;
private var originInfoX:uint=975;
private var rectWidth:uint=350;
private var rectHeight:uint=600;
private var selectedLabelWidth:uint=300;
private var selectedLabelHeight:uint=20;
private var selectedLabelX:uint=25;
private var selectedLabelY:uint=130;
private var descriptionLabelWidth:uint=300;
private var descriptionLabelHeight:uint=150;
private var descriptionLabelX:uint=25;
private var descriptionLabelY:uint=160;
private var imageWidth:uint=100;
private var imageHeight:uint=100;
private var imageX:uint=125;
private var imageY:uint=15;
private var videoWidth:uint=300;
private var videoHeight:uint=240;
private var videoX:uint=25;
private var videoY:uint=330;

With all these variables, the user must be able to set the info display as he prefers, changing the size
or the position of the elements. For example, if the user preferes to have the info display at the left

11

Figure 4: Red arrows represent originInfoX and originInfoY. Yellow arrows represent rectWidth and
rectHeight. Black arrows represent selectedLabelWidth and selectedLabelHeight. Green arrows
represent descriptionLabelWidth and descriptionLabelHeight. Blue arrows represent videoWidth
and videoHeight. Orange arrows represents selectedLabelX and selectedLabelY. Purple arrows rep-
resents descriptionLabelX and descriptionLabelY. Pink arrows represent videoX and videoY

part, and the concept graph at the right part, he would only need to change the variables originInfoX,
originInfoY in the ConceptGraphMedium.as, and originX and originY in the CharacterHandler.as

As we are need to read more information of the character from the XML file, we have to update
the XMLLoader adding the new character fields. The updated function with the new fields is the
following:

var charData:Object = new Object();
charData.id=dataCharacter.@id;
charData.nameChar=dataCharacter.@name;
charData.imageURL=dataCharacter.@imageURL;
charData.videoURL=dataCharacter.@videoURL;
charData.description=dataCharacter.@description;
arrayChars.push(charData);

3.2 CharacterHandler.as

Some changes according to the information display have been added to this class. Now, the con-
structor of the class also contains the textfields and the video references. The code of the constructor
is the following:

12

public function CharacterHandler (charData:Array,
arrayRelations:Array, selectedLabel:TextField,
descriptionLabel:TextField, ns:NetStream):void {
.....

}

Everytime the user clicks a character, all the information needs to be updated and displayed on
the screen. This is processed in the click function. We can see in the following code how this
information is processed and displayed:

public function click(characterClicked:Character): void {
selectedLabel.htmlText = "You have selected: " +

characterClicked.getName();
descriptionLabel.htmlText = "Description: " +

characterClicked.getDescription();
if ((characterClicked.getVideoURL()==null) ||

(characterClicked.getVideoURL()== "")) {
ns.pause();

} else {
ns.play(characterClicked.getVideoURL());

}
....

}

The textfield uses the htmlText to so formatted text. The video will not be shown either in case there
is no videoURL or if it is empty.

3.3 Character.as

In the character class we have to include the new attributes of the character: name, description and
video. We include this attributes in the constructor of the class:

public function Character (radius:Number, id:String,
imageURL:String, nameChar:String, description:String,
videoURL:String):void {

....
}

Other functions to return the name or description were also created:

13

public function getDescription():String {
return description;

}
public function getName():String {

return nameChar;
}

3.4 Relation.as

The relation amongst characters remains the same as in the basic concept graph, so no changes have
been added to this class. However, in the advanced concept graph, this class will be renewed.

3.5 data.XML

As in the basic concept graph, all the data information is contained in the XML file. The structure
remains the same, but new information has been added to the characters. This new information is
the name of the character, a description, and a link to a Flash video. Relations remains the same.

This is a fragment of the data.XML file of the example:

<Example>
<Nodes>
<Person id="allsingers" name="All singers" imageURL="allsingers
.jpg" videoURL="" description=""/>
<Person id="50cent" name="50 Cent" imageURL="50cent.jpg"
videoURL="video/50cent.flv" description="He’s thug and a
gangsta. He’s also a genius. 50 Cent is a popular African-
American rapper, also known as Fiddy or Fifty, who rose to
fame following the success of his 2003 debut album Get Rich
or Die Tryin’"/>
<Person id="aliciakeys" name="Alicia Keys" imageURL="aliciakeys
.jpg" videoURL="video/aliciakeys.flv" description="Alicia Keys
is an American R&B/soul singer, composer, record producer, and
pianist. She released her debut album Songs in A Minor in 2001,
the title being a reference to both her classical aspirations
and to the fact that she wrote most of the songs at a very
young age."/>
....
</Nodes>

14

<Relations>
<DirectedRelation fromID="allsingers" toID="50cent"/>
<DirectedRelation fromID="allsingers" toID="aliciakeys"/>
<DirectedRelation fromID="allsingers" toID="amywinehouse"/>
....
</Relations>
</Example>

Once again, this file has to be customized to meet the customer needs. The structure must remain
the same, but the information should be updated.

15

4 Advanced Concept Graph

It’s coming...

16

