
WHITEPAPER

by Bertrand DUPLAT

President and CTO of Virtools

and

François DUJARDIN

Virtools Expert

Game Prototyping in Dev

 Virtools SA
93, rue Vieille du Temple
75003 Paris - FRANCE

Ph: (+33) 1 42 71 46 86 / Fax: (+33) 1 42 71 86 53

 Virtools Canada Inc.
1250, Bvd Rene Levesque Ouest/Suite 2200

Montreal QC H3B 4W8 - CANADA
Ph: (+1) 514 989 3126 / Fax : (+1) 514 989 3127www.virtools.com

VirtoolsTM

Prototypes as a communication/sale tool :
- To fi nd a publisher. One obvious goal for a game development

house or designer with a concept is to make the prototype, on top
of the game design documents, in order to convince a publisher
to fi nance the project. And the prototype matters even more if it
demonstrates the gameplay’s quality or originality.

- To convey a clear in-house vision of the game. Here the goal
can be two-fold: on one hand to convey internally the quality
of the concepts and design to the in-house producer and get
the game design going; on the other hand, to carry a vision to
an overall game development team (artists, musicians, game
designers, programmers, project managers...) to stimulate them
and get them all going in the same direction.

Prototypes as an exploration tool :

- To validate gameplay ideas. New gameplay ideas need to get
tested, refi ned and validated before being successfully added
to a game. What if the ideas seem good and fun on paper but
are tedious, bring nothing, or are just not understandable by the
player? And, if these ideas are good, how to get them right, to get
maximal benefi ts and effects from them.

- To discover a whole new gameplay . Even more so than
new gameplay ideas, creating a whole new gameplay concept,
whether at the frontier of an existing genre or even outside of it,
is a highly diffi cult and perilous exercise. In that case, a playable
prototype is an invaluable and unavoidable tool for building the
gameplay to satisfying maturity (or deciding to abandon it).

Prototypes as a pre-production tool :
- To solve technical issues. Ideally during pre-production

phase, all foreseeable technical and “artechnical” uncertainties
and diffi culties must be resolved. This must be done in order to
anticipate and remove all future production blocks - or, worse,
U-turns - and open the way for a free fl owing, streamlined
production process. Here prototyping is used to try out
prospective techniques, whatever they might be: animation
engine issues, AI or any other technique that need to be validated
before production starts.

- To dimension production in terms of media, code and their
integration. Pre-production is also when the fi nal production
process is put together, including team sizing, production
planning, and integration techniques… Determining the scope is
key to get the game in time and on budget. In order to estimate it
accurately, prototype-based tests are key to make sure all future
media (images, 3D models, animations, sounds and music) will
work well with the code, and to make sure the media integration
techniques work.
Nothing is more disastrous than fi nding out, once all that the
media does not fi t properly with the engine or gameplay context
and that they have to be all redone…

Game prototypes come in various shapes and sizes, as varied
as the reasons that initiated them; however, there is a common
denominator on what we call game prototyping.
Prototypes are not just animated fi lms giving a taste of both
art and gameplay- its atmosphere, narratives - or even a non-
interactive taste of gameplay. A game prototype has to be
playable, even if it is far from the full fi nished game - just a
make-believe level or two, or even an isolated aspect of the
game. For instance, you may want to preview car controls
and associated camera movements in a car racing game or the
proper integration of models and animation with new animation
algorithms.

In the playability lies the primary motivation behind creating the
prototype, because a game prototype is in fact a tool to deal early
on with interactivity and gameplay.

Here are some typical production issues that Virtools users
answer through prototyping:

- Technical decisions on how to model a car racing track:
prepared track tiles versus path lofting. Prototyping validates
the feasibility of both methods, highlighting their pros and cons,
and assesses the workability for a graphic artist in an actual
production setting.

- Technical decisions on how to build a character skeleton, and
specifi cally how to position its root bone, knowing the types of
actions he has to accomplish. Prototyping helps understanding
the pros and cons of positioning the root bone between the feet,
versus on the pelvis. It also helps decide how to orientate it
during moves like wall sliding, etc… The fi nal decision is to
choose a solution that’s compatible with both the programmer’s
and artist’s toolsets and habits.

- Camera movements. Since camera positioning and behavior
are key elements to the playability and feel of any game,
prototyping allows trying out different approaches for the camera.
For instance, in sports games, a correct camera positioning is
crucial when the player has to aim, and prototyping helps fi nd the
right position, so that the player and potential target are in view
at the same time, at an angle that lets the player aim precisely.

A game prototype is a tool made and used in the early process of
designing an fi nal complete game. Based on our long-standing
experience with game developers using Virtools Dev, we found
three primary reasons for building a game prototype:

- As a communication/sale tool
- As an exploration tool
- As a pre-production tool

Page 2

© Bertrand DUPLAT and François DUJARDIN

What is a prototype and what is prototyping ?

Why Prototype Games ?

 Virtools SA
93, rue Vieille du Temple
75003 Paris - FRANCE

Ph: (+33) 1 42 71 46 86 / Fax: (+33) 1 42 71 86 53

 Virtools Canada Inc.
1250, Bvd Rene Levesque Ouest/Suite 2200

Montreal QC H3B 4W8 - CANADA
Ph: (+1) 514 989 3126 / Fax : (+1) 514 989 3127www.virtools.com

VirtoolsTM

These diverse motives for building a prototype also show where
prototyping fi ts at different stages of the overall game making
process: early on, at the concept stage and up to pre-production.

The prototype’s role as a tool is to attract the bright side - fi nd
fi nancing, convey vision, create and refi ne gameplay - as well as
stave off the infamous dark sides of game development: avoid
designs that show their weaknesses too late, avoid technical
roadblocks or catastrophic production planning mistakes.

How to prototype in Dev: Techniques and
Methodologies

Team and Timing
A typical prototyping team can work around three people:
one artist for the 3D models, texture and animations; a game
designer; and a Virtools Dev Scripter to create the interactivity.
In certain cases, the Game Designer can also be either the artist
or the Virtools Dev Scripter. Prototypes rarely require C/C++
programming.

A prototype can be created in as little as 3-4 weeks, with initial
playability already in place usually after one week. Achieving
the earliest playability, in a week or less, should be a target
goal.

Questions to be answered
Before starting the prototype, its purpose should be well defi ned.
In which of the previous categories (communication/sale tool,
exploration tool, a pre-production tool) does it fi t? What
questions need to be answered through this prototype?

If the prototype serves as pre-production tool, the production
process of the prototype matters as much as the fi nal prototype
itself, because some of its design (and implementation) aspects
will be reusable in the fi nal game. Here the pre-production
prototyping process itself should be a mock-up of the fi nal
process. However, if the prototype’s fi nal goal is as an
exploration tool, keeping an open mind is more important, since
too much planning might kill chances of making unforeseen
discoveries. Therefore, prototype production techniques will
differ depending on the fi nal goal.

Depending on the prototype’s purposes, what should be its core
gameplay functionalities? Large multi-purpose prototypes with
numerous functionalities can best be built and implemented by
classifying them according to their desirability: “must have”,
“should have”, and “nice to have”. This allows the team to
work iteratively: implement essential «must have» features fi rst,
then develop the full prototype in phases. Once «must have»
functionalities have been integrated, the prototype is quickly
functional in its basic form. The prototype can already be used
to answer important questions without wasting any time.

A modular architecture
The primary hurdle in creating a prototype is allowing
collaborative modifi cations to occur as quickly and as often as
possible to continuously improve the prototype both in terms of
art and gameplay. This iterative process among all team member
requires adapting the prototype’s architecture accordingly.

Gameplay and interactivity should be broken down as modules
(e.g. player moves, camera moves, UI...). These modules
should be as independent as possible, with inter-dependencies
clearly highlighted and isolated, to allow the switching off
or replacement of modules. Since this is the time to specify
interfaces and constraints between the various bricks/modules
of the game - later to be validated in the prototype - this is when
to defi ne production team’s working process. This is where
prototype production process helps formulate the fi nal game
production process!

When using Virtools Dev with a modular architecture, the
prototype’s core is a ‘shell’ .cmo fi le containing only the core
script that dynamically loads all the modules as .nmo fi les, using
external .txt or XML-like parameter tuning fi les. These later fi les
contain what can be modifi ed by the game designer through a
standard text editor, enabling him to tweak gameplay parameters
autonomously. Parameters can also be modifi ed inside Virtools
Dev with a button/slider GUI to validate them on the fl y. In
the same way, media is kept external so that the artist can
modify them and integrate them in the prototype with minimal
interference or support from the Virtools developer.

The modules’ interdependencies take the form of parameters
(usually in the form of parameter arrays).This modular approach
permits the playing of content even if some modules are missing
or still at an early stage. Theses modules can therefore evolve
separately. Different modules can even be developed in parallel
by different people. When working on these various modules,
testing them in the overall context is very easy since launching
the prototype will dynamically load the latest versions of the
various modules and link them together at play time.

In the fi nal prototype, the entire content is merged as one fi le.

Media
The idea is to start with very simple shapes that are later replaced
with fi nal 3D models. e.g.a cube for a car, existing animated
characters...) These models are iteratively replaced as new
better versions become available. So testing interactivity and
gameplay can begin even before the media is produced.

Of course, to facilitate media replacements (made easy in
Virtools Dev 2.5 and later versions), the rule of thumb is to
respect topology and hierarchy. More precisely, (e.g. for vehicles
or mechanical parts) scale, pivot points, and axis of rotation

Page 3

© Bertrand DUPLAT and François DUJARDIN

 Virtools SA
93, rue Vieille du Temple
75003 Paris - FRANCE

Ph: (+33) 1 42 71 46 86 / Fax: (+33) 1 42 71 86 53

 Virtools Canada Inc.
1250, Bvd Rene Levesque Ouest/Suite 2200

Montreal QC H3B 4W8 - CANADA
Ph: (+1) 514 989 3126 / Fax : (+1) 514 989 3127www.virtools.com

VirtoolsTM

 for objects should be well placed even in the crude 3D forms.
Bone hierarchy should be identical between early and later
characters.
At the end of the media integration process - especially when
the goal is to fi nd a publisher - the fi nal media should be rich,
complex and amazing in the fi nal prototype.

Code and behaviors
Here the rule of thumb is to avoid low level code (C/C++) as
much as possible. Most of the time, C/C++ coding to create new
behavior building blocks is largely unnecessary for prototyping;
however, it can be useful if one of the prototype’s goals is to test
out a specifi c algorithm. In that case, C/C++ and VSL (Virtools
Scripting Language) provides the two ways to access low level
functions in Virtools Dev. Of course, existing proprietary code
such as AI routines or special visual effects (used in the fi nal
game)can be easily packaged into proprietary behavior building
blocks that can then be used in the prototype.

So a thorough knowledge of Virtools Dev’s existing behaviors
and their capabilities (collision, character animation, particles,
visual effects, UI...) is very important. . Behavior building
blocks from additional Virtools Packs, such as the Physics Pack,
Multiuser Pack, AI Pack and VR Pack can be very useful too.

Capitalising on one’s own scripts by saving them into behavior
graphs and scripted objects, (i.e..nmo or .nms fi les) provides
maximum effi ciency when reusing them on subsequent
productions.

Testing, Debugging and Tuning
The good news is that a prototype’s testing and debugging phase
is not as critical and time-consuming as it is for a complete
game. Often times, bugs can easily be circumvented since the
goal again is often to validate the gameplay or a gameplay
aspect. Bugs should however be listed carefully, since they may
provide hints on the kind of problems that may be expected
during actual production.

Versioning
While using a version control system during prototyping is
not absolutely necessary, it ensures that collaborative work
between the artist, designer and developer is seamless. Since
the prototype is split in fi les modifi ed by the scripter (.NMO
and .CMO fi les), the game designer (TXT and XML-like fi les)
and the artist (all media assets), storing all fi les on a server with
version control ensures everyone has access to the latest fi les,
and it automatically upgrades the prototype when a new fi le
version is checked in.

So Go Prototype!

Prototyping, as the fi rst step in a rational game production
process, should be and will be a key economic success factor in
game industry.

Prototyping helps monitor and reduce many risks :
- Markets risks by testing the gameplay before hand.
- Technical risks by testing out techniques chosen for a

game.
- Production risks by helping dimensioning and planning

the whole production process.
Trying things out early also helps uncover unforeseen diffi culties
and risks before they get in the way of the fi nal production.

For the publisher, prototyping acts as a warranty: a proof that
the development team is able to handle the project, as well as
a “screen test” to fi gure out what the player’s reaction will be
before blindly investing large amounts of money.

Designed and developed with these challenges in mind, Virtools
Dev provides accessible graphic-user-interface-based tools
backed-up by powerful rendering and behavior engines to
effi ciently prototype gameplay and immediately test a games’
feasibility and appeal. Virtools Dev is the prototyping tool of
choice to combine rapid development cycles with incredible end
results.

Page 4

© Bertrand DUPLAT and François DUJARDIN

 Virtools SA
93, rue Vieille du Temple
75003 Paris - FRANCE

Ph: (+33) 1 42 71 46 86 / Fax: (+33) 1 42 71 86 53

 Virtools Canada Inc.
1250, Bvd Rene Levesque Ouest/Suite 2200

Montreal QC H3B 4W8 - CANADA
Ph: (+1) 514 989 3126 / Fax : (+1) 514 989 3127www.virtools.com

VirtoolsTM

