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Herding black sheep

Have you experienced the anxiety (or relief) of not being connected 
for 24 hours? Have you witnessed the obsession of social networking? 
Have your ever felt that you have a lack of control over your life on 
the internet?

Common to these issues is that they involve people, ICT components 
(smartphones, apps, websites, routers, spam filters) and often 
a change of function by learning and reconfiguration based on 
experience. They are examples of adaptive collective systems.

We come to touch (and get dissolved in) these adaptive collective 
systems via the use of social ICT, via smart services and the like, 
but the class is much larger and in fact includes many natural and 
man-made systems from various biological systems, to societies, to 
artifacts.

These systems are out there, possibly out of control. They are black 
sheep. We need to breed them, to steer them, to herd them.

This book is a contribution to understanding, designing, controlling, 
and governing adaptive collective systems from the bottom up.

Case study: ants

Ant colonies provide a mesmerizing example of an adaptive collective 
system. While there are more than 14,000 different species, each 
with their own particularities, one can find regular patterns in the 
organization of each colony. A colony usually includes one or more 
queens, many sterile female ants and occasionally some non-sterile 
male and female ants. With the obvious exception of reproduction, 
the sterile female ants carry out nearly all the important tasks 
necessary for an ant colony to survive: nursing, nest building, 
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exploration, combat, foraging, etc. The so-called queen does not 
actually rule anything, but is merely the part of the colony that is 
dedicated to reproduction.

Ants are capable of completing a vast number of tasks by relying on 
a very simple set of rules, without ever requiring a global scheme 
from any centralized component. They are able to follow very robust 
strategies for exploration and foraging, but also to change roles 
from nurturing to hunting during the course of their lives. They 
can also engage in tutoring activity and large coordinated actions. 
At the scale of the colony, the sum of these individual actions then 
looks like carefully designed mechanics, notwithstanding the fact 
that the colony is also remarkably able to cope with many kinds of 
unpredicted events in a completely decentralized fashion.

Case study: crowd management

We consider a crowd as an adaptive collective system consisting — 
aside from the people actually forming a crowd — of security guards, 
information screens, traffic lights, and so on. Most important for 
our purposes, we assume everyone is carrying a smartphone. Our 
example crowds are best thought to be situated in a city where a large 
event is taking place.

Typically, a smartphone is equipped with a myriad of sensors and 
actuators, as well as multiple networking interfaces, including ones 
that support direct peer-to-peer communication. These phones are 
used to capture the local state of a crowd: who the current neighbours 
are, what the local density is, what the current velocity or acceleration 
is, and so on. In this context, we speak of the texture of a crowd, 
which can be visually represented as a two-dimensional network 
in which a node represents a phone, and a link between two nodes 
that the respective phones are directly able to communicate across. 
Local measurements can be disseminated to neighboring phones, in 
addition to perhaps being transferred to central management.

There is a crowd-management system, partly centralized, partly 
decentralized, which not only collects data from a crowd, but also 
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feeds information back. Such information is typically used to 
intervene with the intent of changing the current texture of the crowd. 
Actuation will take place by sending information to the phones, but 
can also take place by controlling traffic lights, temporarily closing 
sections of a street, or using large information screens, among other 
measures.

Case study: robot miners

In a plausible and not so distant future, groups of mining robots 
are utilized in deep-sea environments to collect ore. The group is 
composed of heterogeneous robots, with different morphologies 
(sensors and actuators), sizes, communication devices, and power 
systems. Naturally, their behaviours and the control software 
inducing these behaviours are different too, hence the group is highly 
heterogeneous. One of the major challenges of this application lies 
in the fact that deep sea environments are not well known and are 
likely to change from place to place and from time to time. Therefore, 
the robot designs cannot be optimized before starting the mission. 
Instead, the robots are enhanced with mechanisms that help them 
adapt to the environment.

In the simplest version of this adaptive collective system, adaptation 
concerns the control software only. Robots can individually learn 
useful tricks and skills based on their own experience and share 
these with each other through social interaction, e.g. imitation 
or direct knowledge transfer. In a more advanced version we have 
the technology to change the hardware part (robot morphology) as 
well. Then the robot population undergoes adaptation driven by 
environmental selection, much like the famous Galápagos finches 
described by Darwin. Over time they develop the right morphological 
features (e.g. grippers and wings) to operate effectively miles under 
the sea.
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The Thing
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Nature

In a crowd, if we are dealing with only a handful of pedestrians, it 
will generally be impossible to observe any interesting patterns. This 
may change radically when considering huge crowds. Now suddenly 
all kinds of substructures can be witnessed: lanes, congested areas, 
clogging, repetitive patterns of movements, and so on. In other 
words, we will be able to witness the texture of a crowd. Note that 
there is nothing static about this texture. In fact, we define it here 
to express the spatio-temporal relationships resulting from the 
interdependencies in the social fabric of a group of people [Martella, 
2014]. 

Throughout this text, we consider systems per se to have a ‘size’ 
beyond the tipping point after which collective dynamics can be 
observed. It is difficult if not impossible to provide any fixed number, 
but typically we will be looking at systems consisting of at least a 
few tens, if not hundreds, of elements, or perhaps many more up to 
astronomical numbers as is often the case in internet based human-
ICT systems today.

In general, the behaviour of any entity is identified based on its 
actions. These actions can have an effect on the acting entity 
itself, on other system elements, 
and on the environment. In 
the adaptive collective systems 
we are concerned with we can 
distinguish behaviour of the 
elements individually and the 
behaviour of the system as a 
whole. Throughout this book we 
maintain the assumption that the 
behaviour of system elements is determined by their controllers. 
That is, we assume that each element has an instruction set — the 

We consider systems  
beyond the point  
after which collective  
dynamics can be  
observed
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controller — in some functional form that prescribes and generates 
its actions under various circumstances. We could also say that 
the behaviour of such an individual element is the active and 
observable expression of its controller. The controller of a robot 
would be its control software, for a human being it would consist 
of all the biological, psychological and social rules that determine 
how a person would act in various situations in a given system. On a 
system level the picture is less crisp. The behaviour of the system as a 
whole can be simply identified as the behaviour of all of its elements. 
However, the controller governing this behaviour is not as easy to 
localize as for the system elements. 

In most artificial systems we assume there is a separate controller 
consisting of a myriad of rules used to steer the system or its 
elements. Many of us often make a distinction between centralized 
and decentralized control. With centralized control, the rules 
are executed by a single entity which subsequently instructs the 
elements what to do. This model is akin to that of an orchestra in 
which the conductor guides the musicians through a piece of music. 
In decentralized control, the rules are located at and executed by 
the individual elements. This distinction makes sense only when 
dealing with spatial systems. In a nonspatial system, the underlying 
assumption is that interaction between any two randomly selected 
nodes is not influenced by their physical position in the network. As 
a consequence, disseminating information including control rules 
or decisions is independent of position, and can be done so quickly 
that any two elements are considered to have the same information 
to base decisions on. In other words, they all share the same global 
knowledge. Deploying epidemic protocols this is a suprisingly simple 
way to rapidly spread information in artificial nonspatial systems, as 
exemplified by Usenet news.

This situation changes radically in spatial systems, or, in general, 
when there is additional relevant information that is dependent on 
location. In a pure, artficial spatial system such as a large wireless 
network, the speed of information dissemination is readily influenced 
by distance, effectively preventing its elements from always having 
the same control base. Likewise, although it can be argued that the 



9

A
d
a
p
t
i
v
e
 
C
o
l
l
e
c
t
i
v
e
 
S
y
s
t
e
m
s
 
—
 
H
e
r
d
i
n
g
 
B
l
a
c
k
 
S
h
e
e
p

internet is a nonspatial system at the technical level, as soon as we 
consider its application as a communication channel for humans, 
local spatial contexts in which human participants operate can no 
longer be ignored. Decentralized control will then be very different 
from centralized control in such a system.
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Adaptation

It is very difficult to discriminate between adaptive and nonadaptive 
systems. Firstly, a particular individual does not have to be adaptive 
to be able to handle many different contexts. Secondly, we may 

not be able to identify what, if any, 
environmental changes occurred 
that could explain an observed 
change in behaviour. From this 

perspective, we need to distinguish between identifying adaptation 
based on observation (external view), and identifying adaptation 
based on an analysis of the mechanisms at work within the system 
(internal view). Although having many observations to understand 
a particular system is likely to provide a good approximation of its 
internal organization, it is unlikely that we will get a complete exact 
description from these observations only.

Let us come back to the example of crowd dynamics given earlier. 
Understanding crowd dynamics is critical when designing the layout 
of a department store, a train station, a stadium, a building, etc. In 
order to ensure that the flow of people can be channelled efficiently 
to the exits in the event of an emergency, it is essential that the 
reaction of the crowd is predictable. A well-known problem is that 
seemingly minor modifications in the environment may lead to 
completely different dynamics, rendering reliable predictions close 
to impossible. The catch is, that deducing the dynamics of a crowd 
of people from observations alone is intrinsically limited by the very 
conditions the observations were made in. As a consequence, there 
is no guarantee that the dynamics will remain the same under even 
slightly different conditions, as witnessed by the recurring casualties 
among crowds in seemingly well understood situations. 

In the context of this book, we propose that an adaptive system 
is characterized by its ability to change its control rules through 

You cannot observe 
adaptation
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experience. What this means is that understanding observed 
differences in behaviour can be approached only by looking at the 
internal changes in the mechanics of a system. Note that according to 
our notion of adaptivity, many systems that modify their behaviour 
with regard to environmental changes may not be considered 
adaptive any more, namely when their modifications come from 
internal hard-coded control rules. Let’s look at a few examples to 
illustrate this point.

Typically, a thermostat is an example of a nonadaptive system. 
Although from the outside it seems to adapt to its environment, the 
fact is that each of these changes has been hard-coded inside the 
system. We could also state that the reaction of the thermostat to its 
environment is completely deterministic.

This also can be illustrated by considering the Boids artificial system 
[Reynolds, 1987]. Bird-like individuals wander around in a free 
environment, each driven by three rules only: a repulsion rule (if 
the closest boid is too close, get away), an orientation rule (try to 
match the average direction of neighbouring boids) and an attraction 
rule (if the closest boid is far away, get close). While the behaviour 
of each individual in the flock is highly reactive to the context, 
and while the behaviour of the entire flock may display a singular 
pattern such as toroidal formation, this may not be considered as 
adaptive: if we are able to re-create the exact same situation, both 
in terms of environmental conditions and individuals’ locations and 
orientations, that is, if every part of the setup is made the same, then 
we shall observe exactly the same individual and collective behaviour, 
because the internal rules have also remained the same.
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  What makes them fly in a circle?  
 

Another example of a system that our characterization deems 
nonadaptive is the reaction of the internet to disasters. In September 
2001, when the World Trade Centre’s twin towers collapsed in New 
York City, not only were important message routers situated in the 
basements of one of the buildings destroyed, also a complete internet 
exchange point a few blocks away went down. Obviously, no manual 
repair could be done, yet the observed damage expressed in terms of 
how well messages could be routed to their final destinations showed 
a drop in performance that lasted no more that approximately 30 
minutes. What happened, of course, was that routers were discovering 
that previously established routes were no longer operational. As a 
result, they started to establish alternative routes, rapidly leading to 
a stable situation again. For our discussion, it is important to realize 
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that internet routing protocols have more or less hard-coded policies 
on deciding which routes are best. Thus they are not adaptive, yet 
do make sure that messages are always routed according to some 
fixed notion of a ‘best’ path. The system as a whole changes routing 
paths and seems to be adaptive, yet according to our approach is not, 
because control rules are fixed.

Drawing a clear line between adaptive and nonadaptive is sometimes 
tricky: for example, it has recently been shown that a particular 
species of ants, carpenter ants, are capable of changing roles as they 
age [Mersch et al., 2013]. Is it adaptation? On one hand internal 
mechanisms are indeed modified to accomplish this new role, 
however, it is now known that such modifications are determined 
purely by age and are not driven by the environment. Things are quite 
different when evolution is considered. Through reproduction, new 
ant colonies may sometimes acquire new characteristics. While most 
mutations are neutral or harmful, it may eventually occur that one 
particular ant colony benefits from a lucky mutation and becomes 
more fitted to the environment at hand; that is, more likely to generate 
successful offspring with similar characteristics.

Let us conclude by considering humans. As a collective system 
humans display many levels of adaptation. Similar to other species, 
humans can be studied from an evolutionary perspective, except 
that not only genotypic material may be considered, but also cultural 
and social organization. On a much shorter timescale, humans 
also display learning capabilities that make them able to solve new 
problems both as individuals and as a group. Among the many 
examples, the organization of 
whale hunters from the island of 
Lumbata, Indonesia is singular 
[Alvard et al., 2002]. Every year 
the rules for engaging in the 
Lumbatan whale hunt, as well as for sharing the benefits of the hunt 
among participants, are renegotiated. This negotiation involves 
multiple levels of interaction: maximizing benefits can be viewed 
from the perspective of individuals, families and boat crews, but 
also involves the importance of the role of each individual or boat. 

Adaptation comes  
from the environment
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For example, it matters whether you are the one throwing the spear 
or not, or whether your boat’s team was the one which spotted the 
whale. As a result, the organization of the whaling is constantly 
refined year after year and is able to cope with any lack of fairness 
in sharing the benefits or changing environmental conditions. This 
illustrates adaptation at several levels: the ability to learn, both as an 
individual and as a group, and the ability to implement some kind of 
incremental evolutionary-like process that refines such a process of 
reciprocal cooperation through successive experiments.

Adaptation encompasses various aspects of learning on a variety 
of timescales; from learning new behaviours during the lifetime of 
(groups of) individuals, to the acquisition of new behaviours via an 
iterative process on a larger timescale, implying the replacement 
of individuals in a population (evolutionary timescale), or the 
renewal of concepts used in a population (timescale of the evolving 
organization of societies). The very nature of the learning process 
in an artificial system can also be challenged. The various machine-
learning approaches, such as unsupervised, supervised, learning by 
reinforcement, and learning by optimization, are typically defined 
with having an a priori-defined objective to match. However, it is also 
possible to consider objective-free learning. In this case, the learning 
process is crafted by the very interactions among the individuals and 
the environment, and is ultimately driven by the need to adapt to an 
a priori unknown situation, possibly including interaction with other 
systems, such as human individuals or society. In the latter case, we 
may consider the environment and the systems involved as forming 
an artificial evolutionary ecology, where the adaptation process itself 
is conducted in an open-ended manner and where co-adaptation is 
possible.

Adaptation is important for evolution, but it may sometimes fail to 
bring us further. In that case, some additional help is needed to force 
the system into a new state from which we can make further progress. 
To illustrate, the societies of the 19th century in Europe and the USA 
were radically transformed by the First World War, while the Second 
World War triggered the development of computers, radar, advanced 
aircraft, nuclear weapons, social reform of health and welfare, and 
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the emergence of the welfare state and social contract. Both wars 
were social-wise nothing less than shock treatments, yet in turn led 
to significant social changes that may otherwise never have taken 
place as they did.
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Collectivity

A collective is a (large) collection of units that interact with each 
other. Interaction is essential here; units form a collective, rather than 
just a collection, because (or, if) there is some interaction between 
them. The definition of a collective requires the identification of its 
members, the units that belong to it, and the interactions among 
these members.

We should be warned: a collective is a nontrivial notion. Collectives 
get formed and dissolved by various processes in nature and 
among artificial systems. There is usually more to a collective than 
simultaneous existence and, possibly, interactions. Generally it 
is the other way around, interactions (and joint existence in a 
collective) are consequences themselves. There must be something 
common between the components to form a collective — in biology, 
for example, this is easier to fulfil because all organisms today share 
4 billion years of common history. In ICT the same condition may 
be less trivial and may need to be introduced by hand: two devices 
that do not use the same communication protocol cannot exchange 
information. When humans are present the situation can become 
even more intricate, thus being part of the same melting pot. Again, 
consider crowds: Indian rail users tend to find Western behaviour in 
their very crowded stations extremely irritating because Westerners 
do not know how to behave. So the shared knowledge of the rules of 
engagement in stations makes Indian rail users a collective (of which 
many Westerners are not a member). In the collectives that involve 
humans, members often need to reflect on their situation and have 
some idea about the way behaviour happens (even if just from a 
personal perspective). And this is used as the basis for adaptive 
change.

Otherwise, there is an entire spectrum, from simple collectives, such 
as molecules that can enter reactions under some relevant conditions, 
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through various stages of more and more complex involvement 
in collectives, to the delicate collectives of which humans can be 
members. For instance, species in biology have an emergent identity 
and that feeds back to the identification of membership – when a 
new species is formed, members of the forming species become more 
and more reproductively related to each other while at the same time 
reproductively isolated from members of other species, and at the 
end of this character displacement process the members may even 
be tagged by chemical signals or other means to express identity and 
difference from other collectives.

To have a well defined collective with clear criteria of membership 
there needs to be a focus for identification, and that is reflective 
knowledge or something similar, even in non-human systems. For 
example, for adaptive cars that get their engine control software 
changed overnight the reflection is the analysis of traffic conditions 
that forces change. We may ask ourselves whether a human being 
is a collective system. At first sight they are not, because a human 
is just one unit of its kind, and one unit is not a collective. However, 
the human body consists of cells. Considering these cells as units, 
a human being is a collective. This holds in the structural sense, 
since the body is constructed as a collection of its cells. This also 
holds in the functional sense, because the behaviour is the result of 
interactions amongst these cells. Here we encounter an example of 
two good answers to the question, depending on what we consider as 
the basic unit. This issue is strongly related to the concept of levels. 
On the individual level, where a basic unit is one individual, a human 
being is not a collective. On the cellular level, where a basic unit is 
one cell, a human being is a collective. Stepping up a level, a village or 
a city can be considered as a collective, where units are the humans.  

In general, collectives can be designated as units for a higher level, 
thus introducing (or explicating) a hierarchy, as we will develop later.

So the units are relative, but then how real are they? Common sense 
says that if something is real then you can interact with it: the same 
common sense saying the opposite may just as well be true. If you can 
interact with something, then it must be real. (Or else how would you 
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interact with it in the first place?) This point has been made precise 
in the famous notion of “instrumental realism” by Ian Hacking. The 
electron may be a disputed entity in fundamental physics: being 
a wave besides being a ‘thing’, as well as having other disturbing 
properties. However, assuming it is real is the very reason why we 
can do things with it, such as making a picture on a TV screen.

Different definitions of units give different opportunities for causal 
control. For instance, interacting with a human at a personal level 
would typically involve verbal or written communication, perhaps 
to teach them something. However, to cure an infection one 
should interact with the human body at the level of the cells and 
communicate via administering drugs to them.

Level concepts are fundamental to science and engineering. Loosely 
speaking, the level idea is to approach an object (such an entity or a 
system) from a given viewpoint. Such a viewpoint typically implies 
a level — such as a level of aggregation, a level of hierarchy, or 
similar. Level notions are intuitively suggestive but less completely 
understood in the scientific sense.

The best understood and maybe the historically oldest example 
for levels in a physical system regards the properties of gases. On 
one hand, we can describe an amount of oxygen at a microscopic 
(molecular) level, using kinetic theory referring to the number of 
molecules, their positions, speed, and motion. On the other hand, 
we can use the phenomenology of the macroscopic level that 

considers volume, temperature, 
and pressure in a state equation. 
Gases therefore illustrate multilevel 
systems, multiscale, multilevel 
and multifaceted modeling etc. 
Furthermore, we see here that the 
choice of a different level leads to the 

choice of a language — namely the kinds of questions and words we 
can use. We end up in ‘volume temperature pressure’ talk or ‘speed 
mass velocity’ talk, but we cannot have them both at the same time. 
What we can at least in principle mix or exchange is the information 

Being real does 
not mean it can be 
directly sensed
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contained in the given level; in a perfect world, one can exchange 
(derive) information between the levels, e.g. temperature from 
velocity, but life is much larger even in this simple case.

In this example we can see how the ‘level is in the eye of the beholder’ 
— if we were as small as a molecule, we would probably never come 
to moving pistons and hence to introducing the volume concept, nor 
could we measure temperature. This also helps understand that levels 
are, at the same time, also context (parameter) dependent. Too high 
or too low a temperature changes a system too much to be treated 
by kinetic theory. Also it must be noted that levels are in nature not 
always as neatly stratified as we would like them here. Even when 
discussing molecular reactions, often we treat macroscopic variables 
together with microscopic ones, e.g. temperature and charge.

From the perspective of adaptive collective systems gases form the 
simplest collective system with no (or not much) heterogeneity 
and no adaptivity. Instead, we have the well-known assumption of 
indistinguishability, leading to the fundamental notion of entropy.

The introduction of collective as a collection of units introduces a 
notion of level in terms of parts and the whole. This view, however, 
is too simple. What if, within a collective, units can form groups, 
whereas those groups do not form the units of a collective? Consider 
the following example of a political party having factions within it.

A political party is a collective of its members united by shared 
political goals. In simple terms, we can say they are united by the 
same vision on the big ‘what’ issues. Thus they form a collective 
that is homogeneous regarding the ‘what’ aspect. However, party 
members may differ about operational details, for instance about 
whether or not to form coalitions with another party or on a 
particular choice of how to implement a policy. This means that the 
party is a homogeneous collective regarding one aspect (the ‘what’) 
and heterogeneous regarding another aspect (the ‘how’). Members 
sharing the same view on the ‘how’ can form factions within the 
party, thus creating new collectives that are homogeneous in both 
aspects. It is natural to introduce a new intermediary level, that of 
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the factions between the individuals (party members) and the party. 
Such intermediate levels are the locus for structures such as pressure 
groups that are in conflict and through that conflict they eventually 
bring about change in the overall mission of the party.

With this we face the question of how collectives are formed. 
Species share genetic information (often to extreme degrees, such 
as in plants that clone themselves) that is a very concrete notion of 
shared information. What about ants?  If there are two ant colonies 
adjacent to one another belonging to the same species, do individual 
ants belong to one or the other colony? What is the basis of that 
belonging? Is it in the ant or is it in the environment?  Can ants change 
colonies if they get lost? Usually ants and other animals that live in 
colonies use chemical identification and even members of the same 
colony are not always accepted. Yet mixing is sometimes possible 
and there are rare cases where different colonies live together, and 
also of parasitism or symbiosis, where different species constitute 
one system while retaining their identity at the same time, at least 
for a while (symbiosis can lead to dissolution). Some bee colonies 
bifurcate when a new queen appears so splitting is also possible, 
but as we see in these examples, merging is more seldom and more 
difficult. The case is quite similar in artificial systems where often 
the same cell phone won’t work in a different network of even the 
same provider.

  Can you devise general models for collective formation?   
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Chapter 2
Why Bother
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They are here

A human observer may become instantly lost when it comes to 
considering an adaptive collective system. The behavioural pattern 
at the collective level as well as the single individual’s behaviour may 
be difficult to identify, the link between the individual and collective 
levels may be almost impossible to establish in some cases. This is 
not only true when observing natural adaptive collective systems 
— from bird flocks to swarms of bees, from the complex division of 
labour in ant colonies to interactions in human societies — but also 
in many systems that surround us, most of which we have originally 
designed — from stock markets to the distribution of energy, from 
flows of people in cities to the mechanics of medical drugs. From this 
perspective, we can easily get lost in the collectives, facing collective 
systems we sometimes partly or completely fail to keep under 
control.

With collective and adaptive systems all around us, it is essential that 
we understand them in order to design and control them. Intellectually 
understanding these systems is highly challenging and requires 
interdisciplinary knowledge. As an illustration, early attempts at 
controlling the spread of mosquitoes using pesticides quickly led to 
the outcome of pesticide-resistant individuals. The answer was to 
develop new, more efficient pesticides, 
quickly followed by the advent of 
new, robust mutants. This seems 
(and actually is) a never-ending arms 
race. By carefully understanding the 
evolutionary mechanics at work, we 
know now why such an arms race 
occurs and how to define an efficient 
strategy, in particular by taking into consideration multiple factors, 
such as the seasonal variation of migration [Lenormand et al., 1999].

Designing an  
adaptive collective 
system does not  
imply controlling it
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The challenge is exactly the same with artificial systems, and the 
fact that we actually design such systems does not change the game 
whether we follow a bottom-up or top-down approach. Designing 
the control rules for each individual does not give any guarantee 
that collective dynamics will be as expected. Cellular automata 
(a nonadaptive but collective system) provide an interesting 
illustration. Let’s consider cellular automata in their simplest form: 
a limited number of cells, placed on a one-dimensional grid, where 
each cell may either be on, or off. At each step, the state of each cell 
is determined only by its previous state, the previous states of the 
two neighboring cells, and a set of local rules for which only one can 
be applied. Though this description is exhaustive, and the system 
quite simple, it is very unlikely that one could predict the outcome of 
the whole cellular automata after a few iterations, such as a general 
pattern that might emerge after a few repetitions (e.g. regularities, 
self-similarities, etc.).

Though cellular automata have not been intended to be used this 
way, we could also address the problem with a top-down approach: 
given a desired outcome, is it possible to define the local rules by 
identifying each possible situation? Possibly yes. However, the 
slightest change in the initial conditions will probably completely 
disrupt the dynamics of the cellular automata and lead to completely 
different patterns. From this perspective, the dynamics of a system 
may be predictable as long as we stay within the boundaries that 
have been assumed during the design process, something which 
is very challenging to guarantee in the real world. Indeed, we can 
hardly make a similar assumption for most of the collective systems 
out there. By nature, the real world is a changing, open world, where 
a seemingly insignificant element may suddenly wreck havoc upon 
an entire system.

We are in a difficult position indeed. The cellular automata example 
points out how even apparently very simple systems test the insight 
of individuals. It also poses challenging questions in terms of 
describing what it is we want them to do and in designing simple 
rules to achieve that outcome. The finance example below illustrates 
just how complex things can get in terms of the systems and how 
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critical it is that the systems are under control. So, we are faced by 
tough problems with high stakes resting on whether we can solve 
them or not... and the problems are only getting harder with ever 
more at stake.

  Can you predict the outcome without a pen?  

t=0
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A case study: the financial system

In 1973 economists invented option pricing. The theory demonstrated 
how to construct a so-called replicating portfolio where, assuming 
an efficient market, the prices are kept equal. An efficient market 
assumes perfect knowledge and the inclusion of all knowledge in 
the price of assets. A model-based approach to making profit in 
this market is called arbitrage. Arbitrage looks at assets whose price 
diverges from the price of its replicating portfolio; traders indulging 
in arbitrage buy the cheaper of the two assets and sell the more 
expensive. The theory involved a statistical risk model that looked 
at the overall holdings, taking account of diversity and how the pairs 
of assets moved relative to one another. The trading strategy was 
to ensure that the chances of making a loss in the long term were 
vanishingly small. This had been stress tested against very rare 
adverse events.

In the spring of 1998 an adverse event did happen when many 
financial companies went down, but the company of the founders 
of the theory, LTCM, narrowly survived. The game continued. Ten 
years on from the near failure, very little had changed. The markets 
were bigger and faster and the complexity of financial instruments 
had increased, but our understanding had not progressed much. The 
failure of Lehman in 2008 was little different from the near failure in 
1998, involving all the formidable ingredients of complex models and 
their use as management tools.

Adaptive collective systems are at the heart of many global institutions 
and the financial system is one of the most critical. However, we 
just do not have a good intellectual grasp off the functioning of such 
markets, where complex mathematical models, their embodiment 
in trading systems, and a large population of traders, make for a 
highly complex system with the potential for catastrophic failure at 
its borders.
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They are our melting pot

Adaptive collective systems can be seen as a new type of intelligent 
(computing) system. These systems have particular properties. 
Firstly, they consist of heterogeneous components that can have a 
large variety of architectures, sensors, computing and communicative 
capabilities, and can operate on different time scales. Secondly, it 
is essential that the components are adapting their behaviour over 
time. It is important that units undergo adaptation individually and 
collectively, even if each entity faces different circumstances, and 
focuses on different aspects of the world.

In the collective behaviour of the system we can recognize traditional 
aspects of artificial intelligence and collective computing, such as 
consensus and coalition formation, division of labour, planning, 
etc. The main challenge is thus about composition: the composition 
of information/knowledge, composition of functionality, and 
ultimately, composition of behaviour. In other words this means 
that the dynamic of the collective system is in fact a patchwork of 
dynamics, possibly interacting and even merging with one another 
through time. The emphasis is then put on the capability of the 
adaptive collective system to change the level at which the collective 
may be considered, for example by addressing problems from many 
perspectives, or reaching consensus from the sum of many diverse 
experiences.

This is quite different from the traditional distributed artificial 
intelligence setting, which is more concerned with decomposition, in 
the sense that an algorithm that could work on one single machine is 
converted into a distribution of itself without changing its function. 
Metaphorically, comparing good, old-fashioned, distributed artificial 
intelligence to adaptive collective systems is like considering music 
produced by an orchestra in comparison to the chorus of birdsong in 
a forest.
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Adaptive collective systems are based on arbitrarily diverse 
components that are also inherently heterogeneous; as a conceptual 
category it refers to collectives of a priori unspecified components. 
Yet every such element can be useful, and together as a kind, can even 
be indispensable, for a given adaptive collective system. This is an 
entirely new situation where ‘intelligence’ or high level functionality 
arises not from the component properties but from the organization 
of the system. By studying the adaptive collective system framework, 
we study the systemic properties arising or emerging in this class of 
systems beyond the particular designs or implementations available.

With traditional (distributed) artificial intelligence now succeeded 
by a collective of intelligent machines, the question arises, what is 
next? It is important to realize that complexity does not come from 
distribution or size itself. Clearly the shift from single-machine 
intelligence to distributed-machine intelligence is an important 
one that comes from considering adaptive collective systems. Still, 
one has to realize that as long as we’re dealing with a technological 
shift, some issues may be handled with methods and techniques 
developed in the field of distributed computing systems. New and 
challenging aspects include coping with the inherent dynamics and 
spatial aspects of such systems.

As we have argued before, our focus on problem solving should not 
be primarily drawn from central solutions and applied to distributed 
solutions. Assuming the dynamics of adaptive collective systems 
as we have done here, we are faced with handling the dynamics 
of the unknown. New elements will join a collective for which we 

know close to nothing. A new member 
may be semantically rich or poor, may be 
computationally strong or weak, may be 
mobile or static, yet as long as other members 
barely know how and what to communicate, 
they will need to go through a possibly long 
phase of discovery before the new member 
can be considered to have integrated. This 

requires adaptation, not only from existing members, but also 
from new members. Understanding how to effectively establish 

There are no 
humans and 
machines any  
more
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integration of new members in a collective is perhaps one of the most 
prominent issues to address. Nevertheless, with humans being part 
of an adaptive collective system which also consists of machines, we 
are forced to think of the relationship between machine intelligence 
and human intelligence in a new form. This question is not original 
and has been explored in systems such as Amazon’s Mechanical 
Turk and more recently IBM’s approach toward cognitive computing.

Humans from the 21st century can no longer be considered 
as isolated individuals, but as members of adaptive collective 
systems, crucially dependent on services only available through 
such systems — whether engaged with city or traffic information, 
telecommunication or hotel reservation, regular human activities 
involve simultaneous participation in at least one and/or usually 
more adaptive collective system. Also, traditional boundaries get 
once and forever blurred — roles dissolve. In the old view of human-
machine interaction, different players in the equation were treated 
in different ways according to their best abilities — a human-
machine composition was supposed advantageous because of its 
complementary properties, for instance humans being creative, 
intuitive or good at making sense of things, with machines better 
at tasks of logical reasoning or the handling of large datasets and so 
on. But with adaptive collective systems the situation changes, in 
that systemic roles do not directly map to individual roles, and task 
allocation in an adaptive collective system may use different cost 
functions, where humans perform machine-like tasks and the other 
way around — the idea is thus reversed, and it is the organization 
of work that should produce the good results, not the use of the 
proper individual operation. Thus adaptive collective systems can 
naturally integrate smart and dumb, powerful and resource limited, 
fast and slow, reliable and unreliable elements and yet produce a 
‘good enough’ functionality as a collective. In the future, we will all 
be talking to human and machines.

This immediately bears upon the famous Turing test which deals 
with the supposed difference in humans and machines (with 
‘machines’ meaning mostly computer programs). But there are 
no separate humans and machines any more. Adaptive collective 
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systems create chimeras. In the Turing test, the idea is to tell whether 
we are interacting with a human or a program, using some kind of 
instant messaging application (i.e. you interact only by reading and 
typing text on a computer). The entire test is based on the notion that 
this difference between a human and a computer exists, whereas 
adaptive collective systems thinking suggests exactly the opposite 
— that there is no longer any difference between talking to a human 
or a machine because they are linked in essential ways that cannot 
be undone. A human is already machine-augmented because in our 
everyday dealings we reach out for information available by way of 
machines only: even during a regular human to human interaction 
we can exchange links, check the weather on the Web, translate 
words or look up items using online engines and so on. But similarly, 
machine operations use human information for many tasks such as 
crowdsourcing or recommendation systems and these often include 
open elements: when a person is talking to a restaurant app, the 
latter can question the human restaurant-goer on the fly then use 
this information to update the answer in real time. Is this machine or 
is this human? Where is the dividing line? 

Thus what we are facing is finding a new balance where humans 
augment machine intelligence, and machines augment human 
intelligence. In fact, the notion of collective intelligence needs to be 
rethought of in the context of hybrid systems in which humans and 
computing machinery collectively interact.
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They are disruptive

The prototypical adaptive collective systems we have in mind in 
this book are social ICT systems. These are systems composed of 
three kinds of entities together: (a large collection of) ICT elements, 
such as computers and applications running on them, but also 
various networked devices from smart cars to smart cities; humans; 
as well as machines (artifacts operating in the real world).

The smart factory of the future is an adaptive collective system 
where each element of the factory workflow is wired and smart, that 
is, attached to sensors and wherever applicable, to actuators, and 
has the necessary software to operate as part of the collective. This 
provides groundwork for collective monitoring and action. Such a 
factory is ICT rich by way of the existence of components such as 
sensors, detectors, and applications processing the signals, making, 
executing and monitoring decisions collectively. Furthermore, a 
typical workflow also includes humans whose intelligence and 
actions are necessary for the given process. The collective consists 
of these together, probably subject to a centralized flow control.  
Emergence and adaptation are possible only to the degree that the 
goal of the workflow is not endangered.

Many different information and control flow patterns unforeseen 
at the moment of the workflow design can be realized dynamically. 
These together can help the identification of context in sub-
workflows and hence decisions about workflow. For example, 
sensors on the arm of a human employee on an assembly line 
can provide real time motion information that can be combined 
with other sensor reports and process monitoring data. These can 
assist a local decision agent to infer which part of the workflow the 
human agent is carrying out and how. Based on such information 
(e.g. that an element was left out), the workflow can be redefined 
on the fly, leading to backtracking or — if compatible with the goal 
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— the reordering of steps. Such a system is clearly collective (each 
element would be lost without the others), and adaptive (changes 
the workflow), yet it also shows that in practical adaptive collective 
systems there is no complete democracy of components.

The capabilities of such a system can be further exploited for 
training purposes. Informed, instructed, and monitored by the 
collective — including the ICT and robotic components! — a new 
employee will achieve a high level of performance rapidly. Such 
systems will greatly increase efficiency and versatility of the human 
components. However, this will represent a radically different 
relationship between human and machine components of the 
system, not in the least in the degree of human autonomy.

  Who is the boss here?  

The existence and use of such systems will fundamentally disrupt 
our way of thinking about and interacting with technological 
systems. Earlier examples range from the introduction of cars 
(which disrupted, in fact destroyed, horse-drawn transportation), 
to desktop printers (that simultaneously disrupted the typewriter 
and offset printing industry), and so on. Adaptive collective systems 
are disruptive in the sense of inducing fundamental changes in 
the use and understanding of ICT and its impact on dealing with 
information.

A particular issue emerging from the development of ambient 
technology is that of human dependence. Even in today’s 
forerunners of fully-fledged adaptive collective systems there is a 
symbiotic relationship between human and machine.

  When was the last time you left home without your cell phone?  

Further to the issue of overall control and dependency, in the 
adaptive collective system world we have to live with aiming at 
adequacy rather than optimality. An adaptive collective system is 
adaptive and may adequately fit a purpose but in the old-fashioned 
sense be at the same time suboptimal, and that (to add insult to 
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injury) to an unknown degree. Whereas traditional computing and 
artificial intelligence were looking for an optimal algorithm with 
proven guarantees, they often only worked under assumptions 
about the organization of the human-machine system that no 
longer hold. These assumptions included: unlimited computational 
resources including time; central control and complete access 
to information; a guarantee of specified functionality and so on. 
Each of these are relaxed in an adaptive collective system that is 
constituted of many ad hoc, uncontrollably connected elements 
with limited resources and opportunistic communication, as 
well as heuristic changing methods that prefer quick answers to 
optimal ones.

As a result we should give up on the ideals of completeness and 
transparency of methods in problem solving and focus on some 
new family of methods that support viability: that is, aiming at 
satisfactory (rather than perfect) solutions in reasonable time, 
at an ‘often enough’ frequency (but maybe not always). This 
strategy makes computational simulation a major tool of inquiry 
about adaptive collective systems, where proof of function is no 
longer possible and exact boundaries of applicability are unknown 
but real-world experiments would be too slow and costly, an 
encompassing simulation-based analysis can reveal what can be 
expected.

Suboptimality is well known in biological evolution, which is the 
main example where we can witness adaptation at work. Biological 
organisms are not running against the clock, but against each other. 
As a result, just how good they are 
at beating the clock depends on 
a number of contingencies about 
the history of such competitions, 
and is generally unknown. In 
exchange for this, an evolving 
population has an advantage over 
any engineered solution in that it 
possesses versatility: it will compete with (and outcompete) any yet 
unknown opponent. The same mechanism of adaptation bringing 

Biological organisms  
are not running  
against the clock, but 
against each other
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forth the suboptimal solutions can be optimal (or at least, a best 
known method) for producing new suboptimal solutions to new 
and hitherto unknown problems.

Beyond their intellectual values, adaptive collective systems 
have real-world applicability in the design and analysis of future 
human-machine systems. 
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Life is never going to be  
the same

So, why bother about adaptive collective systems? We as 
individuals are playing an increasingly important role as units of 
adaptive collective systems. The more we enhance ourselves with 
devices that allow for easy monitoring of our state of being, the 
closer we come to a situation in which a collection of people and 
artificial actors will steer us and our environment. Automated self-
quantification giving advice on how and when to exercise, rest, eat, 
sleep, take medicine, and so on, should be compelling enough to 
illustrate this point.

A step further is when tracking and predicting the behaviour 
of people will allow for the dynamic scheduling of public 
transportation: when, where, which, and how many buses are 
needed at a specific location is within reach. Likewise, intervening 
in crowds to circumvent problematic situations becomes feasible 
as soon as we can easily collect enough information about their 
whereabouts and can estimate their intentions.

As a collective, humans enhanced with monitoring and actuation 
devices jointly channel the intelligence for collective adjustments. 
The question of centralized versus decentralized control is one 
of implementation. Both are possible, and hybrid forms are most 
probable, but the essence is that control is materialized as a part 
of the collective and therefore, it can be changed by the same 
collective. Or perhaps by a different entity. Or perhaps exclusively 
by a different entity? Indeed, life is never going to be the same again.

For looking inside, we take as our starting position that each of us, 
is, or eventually will be, to a certain extent bionic: a mixture of the 
natural and the artificial. Prosthetics are a clear example that most 
of us are already used to. We are no longer surprised that specific 
defective parts of our body are replaced by newly fabricated replicas: 
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a knee, hips, and so on. Likewise, digital devices like pacemakers 
that provide assistance are also something that no longer surprise 
us. We may need to get used to the fact that less obvious parts will 
also soon be replaceable: eyes, ears, skin, glands, even parts of our 
brain. That these replacements may outperform their originals is 
obvious.

It doesn’t require a lot imagination to take this one step further. 
With extreme miniaturization at the tip of our fingers, we are 
facing an era in which a total internal body scan will continually be 
performed by an adaptive colony of medical nano-robots, patrolling 
to perform measurements and intercept hostile bacteria and cancer 
cells. We will indeed have virus scanners in the most literal sense 
of the word that adapt to our own metabolism, our aging body, and 
perhaps to adjustable targets set by our own personal preferences.

As a bionic being, our body continues to operate as an adaptive 
collective system. Of course, as a pure biological system, it has 
always operated as such. With the integration of natural and 
artificial units into this collective, our awareness of this state of 
being will necessarily need to be enhanced. We trust Mother Nature, 
but do we trust our enhancements to her?

  Who is watching the watchmen?  

Further to the tremendous impact on our everyday lives, these 
developments will interfere with life on a planetary scale, i.e. life 
on Earth. The bionic human will change the natural concept of 
viability. Babies that would not be healthy enough to reach the age 
of maturity under natural circumstances could live and reproduce, 

thus propagating their genes. In 
evolutionary terms, this means a 
significant change to the process of 
natural selection. Ultimately, it means 
a distortion of the whole fitness 
landscape. This human interference 

with natural selection already began several millions of years ago 
with the very early beginnings of technology. What is new here 

Human and 
machine are  
co-evolving now
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is the adaptiveness of the technology itself. Enhancing humans 
through adaptive collective systems as we envision here leads to 
a co-adaptive system where the natural (human) and the artificial 
(machine) components are both adapting to each other. Selection 
and fitness, therefore, will be defined in the context of this co-
adaptive system as a whole. Putting this to the extreme, and 
forgetting the different time scales for the moment, this means that 
every new generation of technology will redefine viability for the 
new generation of humans and vice versa.

  Would you be here today if not for technology?  
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Chapter 3
The Purpose of (not) 
Having a Goal
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Purposefully goalless  
and happy

When engineering a system, be it social engineering, software 
engineering, electrical engineering, or any other flavour, we as 
engineers seem to have this perpetual habit of wanting our system to 
have a goal. In other words, our engineering efforts always seem to 
be steered to ensuring that the end product operates toward a point 
where we can say that it met its objectives. Those objectives have 
often been explicitly incorporated into the system in a way that it 
can, during its operation, measure to what extent it is meeting its 
objectives.

In addition, we have made sure to incorporate a myriad of 
mechanisms that will allow a system to keep on track. We may 
deliberately design a system to explore a variety of trajectories, and 
may thus temporarily observe deviations that seem to indicate the 
system is moving away from its objectives. However, as long as we 
eventually observe that goals are being targeted again, we agree that 
the system is behaving as intended.

Our engineered systems generally have a goal. But should our 
engineered systems always have a goal?

For many of us, even posing this question may come as a surprise. 
The simple idea of proposing a system that does not have a goal may 
be very difficult to explain as being 
valuable. The obvious question 
that would be raised is, ‘but what 
does such a system do?’ A system 
without a goal can explore simply 
to discover something that we did not yet know. That is, a general 
drive to explore can replace the specific goal to achieve. But is this 
valuable, does it have a purpose?

Being without goals 
has good purposes 
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It is somewhat surprising to see how difficult we often find accepting 
that exploration is the only thing a system does, while, in reality, 
much of our own actions as humans cannot be attributed to being 
driven by a clear or useful goal. Yet most of us are curious and are 
used to spending much of our precious time on purely curiosity-
driven actions and in most cases this is not considered useless or 
valueless. 

If we accept that there can be good purpose in engineering systems 
for the sake of exploration and discovery alone, we need to address 
the question of how to actually engineer such systems. Before 
addressing that question, however, let us first consider the situation 
of when we have set goals, yet find these goals change while we are 
attempting to meet them.



Playing the changing game

Engineering an adaptive collective system seems to be much easier 
when its targets or objectives have been clearly set. If we assume 
that at any moment in time we can more or less accurately measure 
how well a system is meeting its objectives, we can also measure the 
effects of choosing specific actions to meet those targets. As a first 
step toward engineering goalless systems, let us consider a situation 
in which objectives may change while the system is operating.

When the system is designed explicitly as a feedback-control loop, 
this should, in principle, not pose any fundamental problems.
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During the analysis phase, the choice for specific actions will most 
likely change in an attempt to meet the new objectives. In a well-
designed system, we would need to change only the objectives, but 
none of the mechanisms. Even when the feedback-control loop is 
less explicit, targeting moving goals should not be an issue as long 
as we can evaluate how well the system is doing. In other words, as 
long as we have a feedback loop that provides self-evaluation about 
the working of the system to the system, we should be doing fine. In 
fact, such systems with self-evaluation are prominent in every day 
life, as for example, ABS braking systems in cars.

There are mainly only two conditions that need to be met to make 
this approach work. First, the rate at which objectives change should 
be lower than the rate at which we can see actions take effect. 
Second, the set of actions at hand should be appropriate to achieve 
the objectives. If a goal is to minimize monetary costs for resource 
usage, mechanisms should be in place to allow the system to switch 
between different resource providers. Evolutionary adaptation in 
natural as well as in artificial systems has been shown to be very 
successful in coping with changing environments and/or definitions 
of quality (fitness).

Radical changes in objectives may violate these constraints, 
requiring dynamic adjustments to the set of actions from which the 
system can choose. Humans may well be the cause of such radical 
changes, either intended or not. However, they may also be of great 
help if considered as part of the adaptation process. When following 
a specific path humans are often decidedly better at guessing it 
is leading to a dead end; they can be very good at instructing a 
component to momentarily ignore a specific evaluation criterion, 
thus bending evaluation toward exploring alternate and more 
promising paths. Finally, humans are also quite efficient at deciding 
when to reset an evaluation and start anew, assuming different 
initial conditions.
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The good shepherd and  
the black sheep

Adaptation is not optimization. There are many ways to explain the 
difference between the two, but the essence is always related to the 
absence or presence of an explicit objective. Pure optimization is 
about maximizing (or minimizing) some quantity towards a given 
objective. For instance, we might want to find an optimal investment 
portfolio, i.e. a certain mix of shares, that maximises our profit over 
a year. In contrast, adaptation does not require a clear goal per se. A 
flock of birds populating a newly discovered island will adapt to the 
local circumstances, e.g. temperature, type of food, and predators, 
without being led by an optimization objective. Birds that can handle 
the new circumstances better will have more offspring and their genes 
will be more extensively spread from generation to generation. These 
genes determine the physical makeup of the birds as well as their 
behaviour. Over time the birds will acquire the right physical features 
for the island, e.g. thick feathers, long beak and good camouflage 
colours, and the corresponding behavioural patterns that make them 
successful. This population of birds is not maximizing any objective; 
it simply undergoes environmental selection. In this process, there is 
no crisply defined objective, like profit. Some changes can of course 
be quantifiable, such as the length of the beak, but having longer 
beaks is not a goal here. Rather, it is a means to an end — that of 
survival and reproduction.

In artificial populations adaptive mechanisms can be utilized for 
optimization purposes. Typically, the objective would be rooted in 
performing some task. Think, for 
instance, of a group of cleaning 
robots that has to minimize the 
number of soft drink cans left 
in a stadium after a concert. 
Depending on their control systems, these robots may find and 
collect fewer or more cans and we can make their task performance 

Life on Earth does  
not have an objective
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improve over time if we enhance them 
with adaptive mechanisms to adjust 
their controllers. In this process, new 
controllers will be generated and tested 
continually, keeping the good ones and 

discarding those with a poor performance. This process is driven by 
task-based selection. Over time, the population will improve and 
perhaps even achieve perfection at removing every single can after 
each concert.

The scenario presented at the beginning of this book about deep sea 
mining robots provides a different setting. It is clear that making a robot 
colony viable under the sea is a necessary condition for a successful 
mining operation. However, it is not sufficient, because in the end we 
want to maximize the amount of ore collected. To this end, we need 
to add a task-driven component to the adaptation mechanism. This 
leads to the principal point we want to make here: a good artificial 
adaptive collective system should benefit from the best of both worlds 
and feature objective-free, environment-driven adaptation as well as 
objective-based, task driven adaptation.

  How can we mix environment-driven and task-driven   
  adaptation in one system?  

An inherent problem here is that user-defined objectives concentrate 
on the task, and not on the viability of the population. In turn, 
environmental selection is typically blind to the actual tasks the 
collective is supposed to perform. Thus, in general, these two drives 
(task-based and environmental) cannot be assumed to interact 
positively and help each other. Even worse, they may very well 
interact negatively and frustrate each other. A fundamental challenge 
for adaptive collective systems that are to utilize the full power of 
adaptation is the combination of the self-driven and goal-driven 

forces. Metaphorically speaking, they need 
a good shepherd who drives the herd up 
the hill (optimization), while allowing 
black sheep to wander off the beaten track 
(creative adaptation).  

Adaptation 
should go off 
the beaten track

Adaptation can 
be (ab)used for 
optimization
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Chasing serendipity

True innovations do not come from gradual changes. The automobile 
industry has done an impressive job of improving cars, yet we argue 
that these improvements are the result of a series of subsequent 
refinements. That process will not naturally lead to air planes. 
Something else is needed for that, illustrated by the “Eureka!” that 
Archimedes shouted when taking a bath. Taking some clues from 
a different source, he suddenly realized that the level of water was 
rising as he entered his bath and so solved a problem previously 
thought intractable: how to measure the volume of irregular objects, 
such as a crown for instance.

What we need is serendipity: mixing seemingly unrelated ideas to 
come up with an original, never-seen-before solution for a problem. 
A necessary condition for serendipity is to have many different 
perspectives from which to look at a problem, which, in turn, 
demands curiosity. But curiosity is often considered as an a priori 
useless investment for the simple reason that it is not driven by an 
event that already occurred.

So, what is needed to fulfil this curiosity requirement in terms of 
adaptive collective systems? The bottomline is to blend into the 
environment. Let’s zoom into this to make it more concrete. First, 
keep in mind that we are considering objective-free adaptations, 
or, more informally, goalless systems. 
Second, our systems always operate 
in some kind of ecological context. It’s 
easiest to think of this context in terms 
of a society with humans and their 
rules and regulations, yet one where 
changes will always take place. Blending into the environment 
means that a system is capable of finding efficient strategies 
that still meet its internal constraints, yet can be considered to 

Being different is 
not enough to be 
innovative
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be an integral part of its environment. Meanwhile, it still operates 
toward increasing the global welfare of its collective.

The key observation is that a system can explore opportunities in 
its environment, and that it actually does so. This act of exploration 
is what blending is all about. Yet, because the environment 
does not belong to the collective and is thus largely unknown, 
exploring manifests itself typically through an extensive trial-
and-error process. It forms the core of what we normally require 
for innovation to take place.

There are many reasons why adaptive collective systems are 
efficient through gradual adaptation, some of them due to 
their environment. Firstly, a large environment yields many 
opportunities, but also many paths to better, more efficient 
strategies as it may be easier to jump from one particular strategy 
to another if they are not too dissimilar. Secondly, exaptation 
can be expected in rich environments. Exaptation denotes re-
use, by which features acquire functions for which they were not 
originally adapted or selected.

A canonical example of exaptation is the evolutionary transition 
from swimming to walking: the first fishes that came out of water 
used their fins to move on earth. While these fins later evolved 
to be more robust for their new function, their original use for 
crawling on earth originally resulted from a selection pressure in a 
different (watery) environment [Shubin, 2009].

But exaptation is not serendipity. There is more to it than that. 
The core idea of serendipity is that a true breakthrough requires 

two conditions to be met. Several key 
components must be put together, 
instead of just one, like for gradual 
adaptation. And then components 
which are seemingly useless must 
also be considered. The challenge is 

to acquire such components, and to retain them long enough so 
that they can be combined when the time and place are right. The 

Innovation 
makes life easier, 
eventually
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important point with serendipity is that the combination of several 
components results in much more than the sum of the benefits 
taken from each of these components. 
This is the “Eureka!” moment we discussed 
earlier: Archimedes was considering how 
to measure irregular objects, happened 
to see that water level was affected by 
his body entering the bath, and knew his body qualified as an 
irregular object. If only one of these elements had been missing, 
he probably would have never come up with his famous law of 
physics.

What does this mean for adaptive collective systems? Let’s consider 
computational evolutionary processes where we move from one 
candidate solution to another given a specific problem. The first 
condition states that serendipity is most likely to take place when 
we are simultaneously exploring at least two very different paths. 
More concretely we need to explore, simultaneously, two different 
problems. The second condition states that we need to be cautious 
about deciding when a solution is not good enough (e.g. when 
evaluated against a specific objective). Instead, we should consider 
retaining it. This leads to two independent threads of candidate 
solutions to two different problems. Where we would normally 
never think of bringing those threads together, chasing serendipity 
requires us to do exactly that: explore the combination of unrelated 
candidate solutions.

It is not difficult to imagine the space and time complexity of such 
chasing. The space complexity comes from retaining candidate 
solutions we would normally dispose of. The time complexity 
comes from exploring seemingly random combinations of candidate 
solutions from different threads. No one said it would be easy.

Curiosity yields 
serendipity
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Chapter 4
Bring The Thing  
to Life
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A new game

The adaptive collective system world is quite unlike that of 
conventional systems. The greatest challenge in such systems is that 
the required behaviour is specified at the level of the system as a whole, 
whereas it is primarily the components of the system and their local 
interactions we can engineer. The essence of the problem is that the 
engineerable parts have a complex, ill-understood relationship with 
the overall behaviour and performance of the system. Furthermore, as 
a consequence of the adaptive nature of the system, this relationship 
changes over time.

The engineering of adaptive collective systems nevertheless has a 
substantial conventional component that ensures we build the right 
thing in the right way.

First, we never engineer an adaptive collective system on a greenfield 
site. There is always some infrastructure; we have communication 
capabilities; there is a legal, governance and regulatory environment; 
and there are always people who are already in place. This shapes and 
constrains what we can do, but it also means that we have a group of 
people to engage with in order to get the engineering right.

Second, there is a small number of key perspectives to have in mind 
when engineering an adaptive collective system. There is the element 
of performance: what people and things actually do. Then, there is 
what is called ‘ostention’: what people and things tell each other to 
do. This is an important way of getting people to do the right thing 
but the relationship between performance and ostention is complex 
and full of potential for misunderstanding, negotiation, deception 
and confusion. Finally, we have the artifacts: those that codify/
inform/document the performative/ostentive interplay. These are 
what we have more control over but this has an extremely complex 
relationship with the main performance/ostention interaction.  
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Regarding the artifacts we can identify three classes:

— Actors, i.e. animate things that operate in the world:  
      smartphones, robots, people, bacteria, actuators

— Computing resources: code, hardware, networks, sensors
— Regulation, such as laws, rules, advice, codes of practice  
     or conduct

Distinguishing these classes helps in focusing our engineering efforts 
and positioning them with respect to others.

Third, we argue that there are specific sorts of activities in the 
engineering of adaptive collective systems doing things in the world 
through the agency of people. We are not suggesting that these are 
the only activities, but we do think it will be important to consider 
them as part of the engineering methodology.

When it comes to operation, we should look at the needs that an 
adaptive collective system should meet. There are many pitfalls 
around this activity [Seddon, 2008]. The real point of this work is 
to identify need and work out how best to measure this outcome 
directly. This should avoid simplistic key performance indicator 
approaches because these often provide a rich environment for 
perverse incentives. Operational activities also include getting the 
legislation, incentives, and job descriptions to reward performance 
that meets the stated needs. This aspect of an adaptive collective 
system impinges most directly and comprehensibly on the people 
involved in performance. It sets out the values of the adaptive 
collective system and the working culture we want to engender. 
Finally, we need to recruit the relevant actors.

When designing, a key part of the information infrastructure is to 
make the work that is being done evident to those in the adaptive 
collective system. A consequence is that we need to develop a 
measurement and activity-capture subsystem, ensuring adaptive 
collective system performance meets the identified needs and 
perhaps identifies emergent or changing needs. Along these 
lines, we should be able to observe and facilitate interaction. Our 
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engineering goal is to actuate the system so it supports performance 
needs. Design thus entails ensuring a way to form a rich picture of 
an adaptive collective system’s use and then the means to show how 
best to support it. However, we should notice that we now also need 
to give people models and visualizations that help them understand 
how they meet needs. As far as possible, design of the information 
infrastructure should reinforce the central culture and values of the 
adaptive collective system, and should make evident that what and 
how people do things affects the outcome for the people the adaptive 
collective system serves.

Finally, in the context of development, we need to gather innovative 
suggestions for change from people on the ground.  Here we 
should identify our key or lead users and look to them to help drive 
development. This will involve joining people up across sections so 
that they can identify conflicting demands and attempt to prioritize 
suggestions for change on the basis of how effective the change will 
be. Typically, we need to facilitate experimentation in a ‘sandbox-
like’ environment with real people to see if innovations work in 
practice. At the same time, we need to ensure that we can respond 
as needs change. Often underestimated but equally important is 
to involve outsiders who will be able to offer a sceptical viewpoint 
on the performance of the adaptive collective system, and who can 
identify disruptive change because they are not signed up to the 
culture and values centred around the adaptive collective system.
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Breeding

The first step in designing an adaptive collective system is to breed it 
from scratch up until deployment is possible. From this perspective, 
we distinguish between two different objectives. One, engineering an 
existing system is about building a model from observing an adaptive 
collective system from the real world, in order to better understand 
the world and possibly act on it. Two, we may also engineer new 
realities, that is designing an adaptive collective system that is 
meant to blend and act on the world in its own unique way, giving 
rise to fundamentally new dynamics. 

Engineering an existing system

Engineering an existing adaptive collective system requires that we 
facilitate a virtually never-ending loop of monitoring, anticipating 
and intervening in behaviour. A crucial aspect in this process is 
ensuring that we have models that not only explain what we are 
monitoring, but have the capability of predicting what behavior we 
can expect. Having a register of monitored and predicted behavior 
allows us to reason about which interventions to apply in order to 
change what has been predicted, if that is what we want.

There are three important elements 
in engineering adaptive collective 
systems from this perspective. First, 
we need to make sure that we can 
actually monitor a system, implying 
that there are sensors that can capture 
a myriad of behavioural aspects, along 
with the means for aggregating and 
fusing data into useful information.

Engineering an 
adaptive collective 
system implies 
building models 
of an adaptive 
collective system
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Secondly, and symmetrically, we need the actuators to enable 
interventions, perhaps along with the means to dissect abstract 
notions of how to interact into signals that are meaningful for our set 
of actuators.

Thirdly, and most important, we need models that produce reliable 
predictions of the behaviour we can expect based on the input from 
sensors. From this perspective, engineering an adaptive collective 
system is all about developing models that capture the real-world 
operation of such systems and are able to tell us about how they will 
behave in the near future.

Engineering an adaptive collective system becomes a problem of 
building models of such systems. It places current reality in the 
service of model engineering.

How do we build models of adaptive collective systems? Models 
should be able to capture real-world operations, implying that 
we need real-world data to start with. Although collecting data 
has become easier compared to say, a decade ago, it remains a 
cumbersome effort requiring significant attention and patience, not 
in the least because for any collected data set it may not be obvious 
that, and if so how, meaningful information can be extracted for 
building a model. We have already noted that having to deal with 
a myriad of different (types of) information sources is a huge 
challenge for adaptive collective systems. Building models provides 
another reason for putting effort into solving the problems with such 
heterogeneity.

  How do we meaningfully sense the (evolving) state   
  of a real-world adaptive collective system?  

Developing models is a creative process, and there is a lot of existing 
experience in producing models that make sense. Of course, 
the process of model development is far from being completely 
understood. Nevertheless, by stating that we need real-world data 
for building models, we have the obligation to validate our models by 
simply comparing their predicted behaviour to observed behaviour.
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However obvious this may seem, it is remarkable how easily we 
seem to tend to ignore this step.

  How can we build models including their validation?  

In practice, many adaptive collective systems will take a more 
pragmatic approach.  The participants in the adaptive collective 
system will have considerable expertise and will develop the system 
using commodity components in unusual configurations driven 
by a very local view of the needs the adaptive collective system is 
intended to meet. The adaptive collective system may grow by a 
process of accretion or bricolage (Do-It-Yourself) as people pick and 
choose what is appropriate to use.

Examples abound of this sort of engineering by tinkering. For 
example, in Finland there are groups focused around old-fashioned 
computer forums with a focus on innovating and exchanging advice 
on how to make the best job of heating your house (using boilers, 
heat pumps, solar, wind...). The system adapts because there is a 
continuous flow of new products that need learning to assimilate 
into the dialogue, plus a range of modifications and configurations 
that help get the best out of them. The system is also collective in 
the sense that there are many overlapping interest groups clustered 
around particular classes of product and particular kinds of 
modification. Many of these changes are not even according to the 
factory-issued guidelines and facts sheets, using (or re-using) the 
components in many unforeseen ways.

Understanding these self-organizing systems and how they survive 
in the long-term by developing, or being replaced by some other 
similar systems is fascinating: understanding birth and death 
processes for these systems helps us to understand more ‘designed’ 
or ‘engineered’ adaptive collective systems.

Engineering new realities

Suppose that we do not want to engineer an existing system, but 
instead want to create new ones. Doing so requires we have models 
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that will explain to us how our intended system behaves. This brings 
us to the other side of our double-edged sword: reality engineering. 
This engineering places model development in service of creating 
reality.

Modelling and simulation methodology offers itself as an iterative, 
models-first approach. Starting from a dummy model (for instance, an 
agent-based model where the agents have – in an ideal approximation 
– no properties or as few as possible) we can gradually dress it up 
with more properties and monitor the behaviour space generated. To 
model a given complex environment, we can continue the process 
until a rich enough behaviour set is produced. (Note that this process 
is not algorithmic as it involves human ingenuity to invent and 
test supposedly useful properties specific for the given problem, 
which requires intuition about the system.) Using customary model 
and simulation testing methods, namely parameter sweeps, the 
behavioural possibilities of the system can be satisfactorily mapped 
to help the process. Once the growing behavioural space includes the 
desired elements (behaviours to be thought relevant or important for 
the real-world system considered), we can establish a catalogue of 
behaviours through the extensive model tests and the parameters or 
conditions leading to them. Equally important, we can at this point 
stop the iteration loop by having found a system with the desired 
properties.

Several remarks must be made. First and foremost, we do not build 
models of the real systems but models for them, as we are not directly 
using actual data for the production of the model. Secondly, this is a 
minimalist methodology which starts from scratch (as close as you 
can get) and then adds properties one at a time, thus maintaining 
minimalism throughout the steps. Still, strictly speaking, the final 
model is a sufficient one, as the process does not guarantee actual 
minimality (i.e. sufficient and necessary conditions). Despite this 
shortcoming, the intuitive understanding here is that we often 
nevertheless deal with a minimal of a ‘smallest’ system. Finally, in 
terms of emergent behaviours, we can include desired and exclude 
undesired outcomes by selecting one and not another part of the 
behaviour space and the parameters or conditions generating it. 
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One intriguing application is that the methodology can be used 
for social engineering. Given a rough specification of the kinds of 
behaviours to be realized in a real system, and the loose way that they 
are expected to be achieved (i.e. giving the available components 
and their properties spaces or possibilities), the methodology is 
suggestive of the actions to be taken out into reality to obtain the 
functionality desired. The model suggests the coordination and 
property set necessary (within the limitations discussed above) for 
achieving the goal.

Closing the loop: interventions

Regardless of whether we are developing models that capture reality 
or create it, engineering requires that we continuously refine our 
models. A standard approach is to simply pick up what a model 
generates and feed that back into the system under study. In 
essence, we are talking about interventions, either by acting on the 
real system that we are modelling or on the model that we are using 
to create a real system. Awareness of this aspect of engineering leads 
to thinking about which intervention mechanisms we need.

So the complete loop looks like this: data (of real systems), models, 
predictions generated by the models, optimization (of parameters 
and operations, using various utility functions — either explicit 
and formal or implicit and intuitive), generating real systems (or 
making modifications), thereby yielding new data (using carefully 
introduced observables defined over the system)... and so we are 
back at the beginning.

This loop tends to be realized in iterative cycles as discussed above 
so it should be noted that it makes little difference where exactly 
we start in the loop. It can be at the model stage or with the existing 
systems — the basic elements of the methodology and their essential 
connections are the same.
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Steering

In the previous chapter we discussed how to breed an adaptive 
collective system, that is, how to build it from scratch prior to de-
ploying it. Here we will concentrate on what happens after the system 
has been unleashed in the world. Although we expect the adaptive 
collective system to follow the directions sketched at breeding time, it 
may be required to intervene in, or steer the system, in order to refine 
its behaviour. There are indeed many reasons for steering an adaptive 
collective system: from helping it solve a particular problem for which 
you have hints, pushing it in some desirable direction, preventing 
it from developing in some undesirable direction (that is, keeping it 
within limits), or ultimately, if necessary, to shut it down.

On-the-fly control of an adaptive collective system

Previously, we considered the example of a group of mining robots sent 
to deep sea environments to collect some ore. What would happen if 
we wanted to move this group of robots to another environment, for 
example to a lunar setting, in order to conduct mining activity? Would 
it be possible to expect that past experience may be straightforwardly 
transferred and applied in the completely new setting? Probably not. 
Yet, we would not want to pay the cost of completely rebuilding the 
system for any new situations. Adaptation can play a key role in this 
process, though it may be idealistic to hope for adaptation to cope 
with changes of very large magnitudes. Then the question is: how to 
push the adaptive collective system towards a new regime.

Technically speaking, the essence of steering an adaptive collective 
system is to influence the forces that drive it. Therefore, it is important 
to identify the most important forces in adaptive collective systems. 
To this end we can distinguish two major categories: components and 
methods of adaptation.
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  How many dogs does it take to herd?  

When it comes to components, the individual elements are perhaps 
the most obvious points of entry here. Changing their behaviour 
can be naturally achieved by changing their controllers or physical 
makeup, e.g. their sensors. For instance, we can switch on traffic 
information receivers in a self-driving car. Then it will be still able 
to optimize its behaviour on a local, second to second level using its 
sensors, e.g. cameras and GPS, but also optimize on a larger scale 
taking its position and traffic information into account. Focusing 
on the collective, influencing coordination and regulation among 
the system elements is the obvious option. For instance, in case of 
a calamity, we may disseminate software code on cell phones in real 
time that would allow them to detect other phones in the vicinity 
and advise their owners to flock together at designated safe areas. 
Finally, while we may not have full control over the collective, we 
may be able to shape (at least part of) the environment in order to 
guide behaviour towards new collective dynamics. A well-known 
example here is the variable message signs on the highways that can 
change the maximum speed.

With respect to methods of adaptation, we should realize that it is 
here that different mechanisms separate evolution from learning 
[Haasdijk et al., 2013]. We perceive learning as a mechanism that 
does not influence inheritable material. In other words, learning 
may change the controller, and thus the behaviour, of a system 
element, but these changes will not be transferable to the offspring 
of this element by reproduction. Learned traits will thus die with 
the learner, unless explicitly communicated to others. For example, 
if a person learns a certain language or learns how to play a certain 
instrument her children will not be born with the ability to speak 

that language or play that instrument. 
However, the parent could pass these 
skills to the children by teaching 
them. We call this mechanism 
social learning. The mechanisms to 

implement the transfer of skills and knowledge can be very different, 
e.g. verbal teaching or imitation, but in all cases the knowledge to 

Adaptive collective 
systems don’t die
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be transferred is not inheritable. Evolutionary learning on the other 
hand, only influences inheritable material, for instance skin colour 
or the metabolic rate of burning sugar.    
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Steering an adaptive system in real time requires changing the 
learning or evolutionary operators. For instance, in case of the deep 
sea mining robots, we may change parent selection by enforcing a 
preference for mating partners with good long range communication 
abilities, even though this property is not critical for executing the 
original mission of collecting ore. Remaining with the same example, 
let us assume that robots can learn from each other by imitating their 
peers. Then we could significantly influence the learning system by 
designating some robots as teachers and mandate that only teachers 
can be imitated.

Exerting control

What makes steering difficult is that one cannot assume that all 
elements of the system are within reach and that we cannot expect 
a centralized control scheme. We can assume only that complete 
absolute control over the system is not an option, and that we have to 
deal with the system’s dynamics to achieve our objective. We are like 
a navigator steering a sailboat, fighting against and sailing with the 
winds and the sea to reach our destination. Matters are complicated 
in the sense that we now have multiple sailboats. A critical issue for 
steering an adaptive collective system is then to identify the relevant 
point of entry.

An example is organized crime networks. Shutting down the operation 
of an organization growing and selling cannabis can be done in many 
different ways, with different levels of efficiency. You may arrest the 
pushers who sell weed in the street, which is an easy task in practice, 
but has proven to be quite inefficient as new pushers quickly replace 

those gone. You may also try to arrest the 
head of the organization, but this is often 
much easier said than done. Or you may 
try to pinpoint the weakest point of the 
organization. The electricians are one of 

these weak points: they are essential to the production unit, which 
requires a robust electrical setup, and they are difficult to replace 
because of their particular skills. Catch the electrician, and you may 
kill the complete line of production and distribution.

Control demands 
understanding 
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Another example is that of mixed societies of insect or animals 
and humans, which have been studied in recent years [Halloy et 
al., 2007]. In a similar fashion to herding sheep, the goal is to steer 
a group of living individuals to comply with our goals. These living 
systems may be adaptive — cockroaches, fishes, bees — and may be 
challenging the steering. Firstly, the dynamics of the system must 
be understood before the relevant links on which to act may be 
identified. Then it is mandatory that the collective reacts positively 
to the steering. While a herd of sheep may accept the presence of 
a dog and shepherd, it is very unlikely that cockroaches would do 
the same. One main challenge is then how to blend into the system 
and steer it from the inside. Solutions that have been explored are 
quite straightforward in hindsight: the best way to be accepted in a 
society is to be part of it. Therefore, why not build a robot cockroach? 
However, this raises the question of how to modify the behaviour of 
one or several robot cockroaches so that they remain blended in the 
population, while being able to yield the required changes we were 
after in the first place.

The ultimate steering: shutting down an adaptive collective 
system

When it comes to steering an adaptive collective system after its 
deployment, the most radical question we may ask is, how to shut 
it down. This seemingly naive question which is relatively simple 
when considering a centralized system (where “turn off the switch” 
is an answer) suddenly becomes a major challenge in a possibly very 
large adaptive collective. Not only the decentralized nature of the 
system makes it difficult to shut it down all at once, but its adaptive 
component may well lead to strategies to disobey an order which 
is in complete opposition to what the adaptive collective system is 
about in the first place: to adapt and survive.

This challenge is very real, even for existing collective systems 
such as the internet  and as well as some of the collective systems 
it encompasses. For example, botnets are programs designed to 
penetrate and take control of computers. Once a computer has been 
infected, it will be used as a new recruit to spread on the infection. 
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Botnets are very real as dozens of millions computers get infected 
every year. While botnets are mostly malicious software, and follow 
the command of the bot herder, i.e. a human accessing the internet 
through one, or several particular computers known by the many 
copies of the bots, the mesmerizing aspect of botnets is that they 
could well be completely autonomous, and possibly adapting over 
time. Now the important point is that, whether adaptation is at play 
or not, it is nearly impossible to shut down the existing botnets.

Shutting down or ‘killing’ a distributed adaptive system can be hard 
or impossible, as illustrated by biological examples. Extermination 
of a given species usually requires other organisms deployed in the 
same ecosystem, but the known examples are rather discouraging. 
Rabbits introduced to Australia have been attacked by a virus 
but that led to co-evolution rather than extinction. Now camels 
are the next target in Australia. In short, killing out a species by 
introducing another is a very controversial technique with adverse 
effects. Another well-known phenomenon is adaptive modification 
arising from the very nature of the system. The popular example is 
the spreading of antibiotic resistance in bacteria — they evolve new 
forms that fend off and even overkill drugs. Also HIV treatment 
faces the same problem with the arising of mutant forms of the 
virus with a different metabolism. Finally, and most importantly, 
there is ‘function change’, the habit of adaptive systems to survive in 
changed environments by abandoning their original functions and 
taking on new ones. One case of this was of the Bikini Atoll where 
radiation from H-bomb experiments did not kill the crabs but turned 
them into predators that kill young birds. In summary, an adaptive 
collective system is like a fluid, it tends to avoid being grabbed even 
while perhaps simply appearing to be like ‘silly putty’ — while looking 
soft and amorphous, the harder you hit it, the harder it hits back.
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Reflecting

We argue that reflection is at the heart of collectivity and adaptivity in 
systems involving human collectives. 

Reflection has its roots in foundational investigations of logical 
systems. It is the inclusion of some property of the system within 
the objects of the system. In logical systems this can be things like 
provability or equality. Famously, Gödel demonstrated that provided 
a system includes arithmetic, it is possible to encode the formulae 
and proofs of the system and to define a proposition that some 
coded proof p is a proof of a proposition P in the system. Using 
this mechanism he was able to construct true propositions that are 
unprovable in the system: this was his first incompleteness theorem. 
Reformulating this, Gödel proved that if a system had a voice, it could 
state “I contain a proposition that you cannot prove”. 

This property of reflecting some meta property of the system within 
the system is very widespread. For example, the notion of reflection in 
the Java programming language where programs have the capacity to 
observe and modify their structure is a very powerful. Many systems 
include some aspects of reflection. In designed systems this might be 
the inclusion of a model of the system that attempts to characterize 
the behaviour of the system given some initial environment.  

The notion of model may also be very informal, based on past 
experience of a very loose match between past behaviour and the 
current situation. In systems involving humans this may be entirely 
based on their memory of system behaviour and on intuitive notions 
of the match between the current environment and some past 
experience.

If we accept that internal change in the control policy of a system 
is a distinguishing mark of an adaptive system then notions of 
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reflection take an important role in 
understanding adaptive collective 
systems in general. Reflection 
mechanisms allow us to explicitly 
capture or model aspects of the 
system that might otherwise be 
unobservable. Thus if we want to 
judge whether a system is adaptive 

or not we need some element of reflectivity because we must be able 
to make observations that go beyond the ‘normal’ behaviour of the 
system.  

In socio-technical systems the notion of level is often closely related 
to particular types of reflection on the behaviour of the system. For 
example, in public-sector delivery organizations there are typically 
operational (mainly concerned with delivery and quality), strategic, 
policy and regulatory levels. Each level requires evidence from lower 
levels and some model of the system in order to adapt at the level and 
effect changes at the lower levels. In service-delivery systems also the 
culture and values of the different collectives play an important role. 
These features play an important role when it comes to combining 
adaptive collective systems in order to transform the systems to meet 
new missions.

As discussed before, the level at which we consider a system is an 
important issue when it comes to understanding whether systems 

are adaptive or not. Making 
such observations and deciding 
whether some system is 
adaptive depends on aspects 
of reflection as well, since we 
need to add extra observations 
and potentially fit a model to 
the new observations.

Reflection is at the 
heart of collectivity and 
adaptivity in systems 
involving humans 

Notions of reflection 
take an important 
role in understanding 
adaptive collective 
systems in general
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Chapter 5
The Future
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Throughout this book we are assuming that we know our adaptive 
collective systems, both as what they are now and what they can be 
in the times to come — using the same components, the available or 
immediately reachable technologies and so on. What we have said this 
far about adaptive collective systems may sound far-fetched to some, 
but in reality it is all within the domain of research and technology 
co-development. That is, the existing or doable, undoubtedly with a 
high risk but that is only because we don’t know how to do it or how 
to exploit it.

But adaptive collective systems as envisioned here can well be far 
more pervasive and supposedly persistent. If our assessment about 
adaptive collective systems is correct, entering the adaptive collective 
systems age is a one-way street. Once the systems become widespread, 
and this is happening as we speak, they become indispensable and 
we will increasingly depend on them. It is fair to expect that adaptive 
collective systems will be around ‘forever’ in some form (much as 
books and other fundamental information management technologies 
have always been used since they were invented).

Avoiding the fantasy world of the unseen adaptive collective systems 
of the future (the time where we live in glass bubbles and so on), yet to 
say something relevant about it, here is a question: will the inevitable 
addition of new, unknown kinds of ICT components to adaptive 
collective systems change the game?
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