
8
Avatar Design

8.1 AVATARS

In vitual worlds, avatars are used to represent human users or autonomous
agents. The complexities of avatars can range from the simple form, which
may just consists of a group of boxes and spheres, to the most complicated
ones, like humanoids with facial animation and sophisticated gestures. Based
on their functionalities, avatars can be classified into the following different
types:

• Animated versus Non-animated: Animated avatars have their own ani-
mation data. These animations are usually controlled by using ROUTE
semantics to express built-in gestures. Non-animated avatars have no
built-in animation data. However they may be controlled by using ex-
ternal facilities (i.e., programs) to make the animation. DLP can be
used to control the animation if the body components of the avatars are
properly defined by using DEF and those defined nodes have geometrical
fields, like position and rotation. In this chapter, we are more interested
in the design of non-animated avatars. However, we will discuss how
DLP can be used to create and control the gestures of the avatars.

• Texture-based versus non-texture-based: Texture-based avatars use tex-
tures to cover or present parts of their bodies, especially, the face and
clothes. These textures are usually presented by using picture files, like
gif or jpeg. Non-texture-based avatars do not use any picture files. They
use their own built-in appearance data to present special effects. The
file sizes of the texture-based avatars are usually small, for they have

95

96 AVATARS DESIGN

embedded picture files. However, they are hard to be controlled by
programs. Non-texture-based avatars have their own appearance data,
which would increase the file size of the avatars, however, they provide
the possibilities for the control from external programs. In this chapter
we will discuss how DLP can be used to control the facial expression of
non-texture-based avatars.

• audio-embedded versus non-audio-embedded: Audio-embedded avatars
have their own embedded audio data in their files, whereas non-audio-
embedded avatars have not any voice/sound data on them. The file
sizes for good quality voice are usually extremely large. They are seldom
embedded into avatars and virtual worlds.

• H-anim compliant versus non-H-anim compliant. H-anim1.1 is a spec-
ification for standard humanoids by the Humanoid animation working
group.[H-anim, 2001] As the name implies, H-anim compliant avatars
are designed according to the H-anim specification, whereas non-H-anim
compliant avatars are not. In this chapter we will focus on the design
and the control of H-anim compliant avatars.

8.2 H-ANIM 1.1 SPECIFICATION

As claimed by Humanoid animation working group in [H-anim, 2001], goals
of H-anim specification are the creation of libraries of humanoids for reusable
in Web-based applications, as well as authoring tools that make it easy to
create humanoids and animate them in various ways. H-anim specifies a
standard way of representing humanoids in VRML97. This standard will allow
humanoids created using authoring tools from one vendor to be animated
using tools from another. H-Anim humanoids can be animated using different
animation systems and techniques.

An H-Anim file contains a set of Joint nodes that are arranged to form
a hierarchy. Each Joint node can contain other Joint nodes, and may also
contain a Segment node which describes the body part associated with that
joint. Each Segment can also have a number of Site nodes, which define lo-
cations relative to the segment. Sites can be used for attaching accessaries,
like hat, clothing and jewelry. In addition, they can be used to define eye-
points and viewpoint locations. Each Segment node can have a number of
Displacer nodes, that specify which vertices within the segment correspond to
a particular feature or configuration of vertices.

The Joint PROTO looks like this:

PROTO Joint [

exposedField SFVec3f center 0 0 0

exposedField MFNode children []

exposedField MFFloat llimit []

H-ANIM 1.1 SPECIFICATION 97

exposedField SFRotation limitOrientation 0 0 1 0

exposedField SFString name ""

exposedField SFRotation rotation 0 0 1 0

exposedField SFVec3f scale 1 1 1

exposedField SFRotation scaleOrientation 0 0 1 0

exposedField MFFloat stiffness [0 0 0]

exposedField SFVec3f translation 0 0 0

exposedField MFFloat ulimit []

]

The meanings of most fields of the Joint PROTO, like scale, translation, are
straightforward from the names, however, the following fields need a further
explanation

• ulimit and llimit: gives the upper and lower joint rotation limits. The
ulimit field defines the maximum values for rotation around the X, Y
and Z axes. The llimit field describes the minimum values for rotation
around those axes.

• limitOrientation: describes the orientation of the coordinate frame in
which the ulimit and llimit values are to be interpreted. This field
specifies the orientation of a local coordinate frame, relative to the Joint
center position described by the center exposedField.

• stiffness: specifies values ranging between 0.0 and 1.0 which give the
inverse kinematics system hints about the ”willingness” of a joint to
move in a particular degree of freedom.

The segment PROTO look like this:

PROTO Segment [

field SFVec3f bboxCenter 0 0 0

field SFVec3f bboxSize -1 -1 -1

exposedField SFVec3f centerOfMass 0 0 0

exposedField MFNode children []

exposedField SFNode coord NULL

exposedField MFNode displacers []

exposedField SFFloat mass 0

exposedField MFFloat momentsOfInertia [0 0 0 0 0 0 0 0 0]

exposedField SFString name ""

eventIn MFNode addChildren

eventIn MFNode removeChildren

]

An explanation on some of the fields above:

• mass: the total mass of the segment, however, it is usually not necessary.

• centerOfMass: the location within the segment of its center of mass.

98 AVATARS DESIGN

Fig. 8.1 A Standard Joints/Segment Diagram of H-anim 1.1

• momentsOfInertia: the moment of inertia matrix. The first three ele-
ments are the first row of the 3x3 matrix, the next three elements are
the second row, and the final three elements are the third row.

A standard joints/segment diagram of H-anim 1.1 specification is shown in
Figure 8.2

In H-anim specification, site nodes are designed for the following three
purposes: First, it can be used to be an ”end effector” location for an inverse
kinematics system. Next, it defines an attachment point for accessories such
as hat and clothing. Third, it provides a location for a virtual camera in
the reference frame of a Segment (such as a view ”through the eyes” of the
humanoid for use in multi-user worlds).

Sites are located within the children exposedField of a Segment node. The
children field of a site node is used to store any accessories that can be attached
to the segment.

The Site PROTO looks like this:

H-ANIM 1.1 SPECIFICATION 99

PROTO Site [

exposedField SFVec3f center 0 0 0

exposedField MFNode children []

exposedField SFString name ""

exposedField SFRotation rotation 0 0 1 0

exposedField SFVec3f scale 1 1 1

exposedField SFRotation scaleOrientation 0 0 1 0

exposedField SFVec3f translation 0 0 0

eventIn MFNode addChildren

eventIn MFNode removeChildren

]

According to H-anim specification, if used as an end effector, the Site node
should use the following consisting naming system: the name of the site should
be with with the name of the segment which attached, like a ” tip” suffix ap-
pended. The end effector Site on the right index finger should have a name like
”r index distal tip”, and the Site node would be a child of the ”r index distal”
Segment. Sites that are used to define camera locations should have a ” view”
suffix appended. Sites that are not end effectors and not camera locations
should have a ” pt” suffix. Sites that are required by an application but are
not defined in this specification should be prefixed with ”x ”.

Sometimes the application may want to identify some specific vertices
within a Segment. That would require a Displace to store the hint message.
The Displacers for a particular Segment are stored in the displacers field of
that Segment.

The Displacer PROTO looks like this:

PROTO Displacer [

exposedField MFInt32 coordIndex []

exposedField MFVec3f displacements []

exposedField SFString name ""

]

The coordIndex field shows the indices into the coordinate array for the Seg-
ment of the vertices that are affected by the displacer. The displacements field
describes a set of 3D values that should be added to the neutral or resting
position of each of the vertices referenced in the coordIndex field of the Seg-
ment. These values correspond one to one with the values in the coordIndex
array.

The H-anim file also has a single Humanoid node which stores human-
readable data about the humanoid such as author and copyright information.
That also stores additional information about all the Joint, Segment and Site
nodes, and serves as a ”wrapper” for the humanoid. Of course, it is used
to describe the top-level Transform for positioning the humanoid in virtual
worlds.

100 AVATARS DESIGN

PROTO Humanoid [

field SFVec3f bboxCenter 0 0 0

field SFVec3f bboxSize -1 -1 -1

exposedField SFVec3f center 0 0 0

exposedField MFNode humanoidBody []

exposedField MFString info []

exposedField MFNode joints []

exposedField SFString name ""

exposedField SFRotation rotation 0 0 1 0

exposedField SFVec3f scale 1 1 1

exposedField MFNode segments []

exposedField MFNode sites []

exposedField SFVec3f translation 0 0 0

exposedField SFString version "1.1"

exposedField MFNode viewpoints []

]

8.3 CREATING H-ANIM COMPLIANT AVATARS

Based on H-anim 1.1 specification, we can design any humanoid with differ-
ent body geometrical data and different levels of articulation, which can be
anything we like. The appendix of the H-anim 1.1 specification also provides
a suggest on the body dimension and three levels of articulation. The level
of articulation zero is the minimum legal H-Anim humanoid, with the node
HumanoidRoot and several default site translations. The level of articulation
one is a typical low-end real-time 3D hierarchy. The level of articulation two
is a more complex one, a body with simplified spine. Take the VRML files
of the level of articulation, which are available from the H-anim web site, as
templates for building H-anim 1.1 compliant avatars, we can design our own
ones.

Here are some examples: First we can design a simple H-anim 1.1 compliant
avatar, which just use simple geometrical data, like box, or sphere, to be the
body parts, which is shown in Figure 8.3.

For the convenience of the test on the construction, we can design each
body part as a seperated VRML file. For instances, the left-hand can be like
this:

\#VRML V2.0 utf8

DEF hanim_l_hand Transform {

translation 0.15 0.7 -0.025

rotation 0 0 1 0

children [

DEF hanim_l_hand_shape Shape {

CREATING H-ANIM COMPLIANT AVATARS 101

Fig. 8.2 A Simple H-anim 1.1 Compliant Avatar

appearance Appearance {

material Material {

ambientIntensity 0.200

shininess 0.200

diffuseColor 0.76863 0.61961 0.54902

emissiveColor 0.0 0.0 0.0

specularColor 0.0 0.0 0.0

}}

geometry Sphere {

radius 0.07

} }]}

Namely, the left-hand (without the left forearm and left upper-arm, which
would be defined in a separated file), is just a sphere with a defined name
”hanim l hand”. Moreover, we need a translation field and a rotation field to
put the body-part to an appropriate position. Suppose that this VRML file
is saved with the file name ”l hand0.wrl”. We can add it into the left-hand
segment in the template file like this:

......

children [

DEF hanim_l_hand Segment {

name "l_hand"

children [

Inline { url "l_hand0.wrl"}

.....

102 AVATARS DESIGN

We use Inline to add the VRML file into the avatar file, however, note that
VRML EAI does not support any referred nodes which is defined in Inline
files. If we want to control the defined nodes in DLP, we should add the
corresponding lines into the avatar file. Similarly, we can define other body
parts, like forearm, thigh, upper-arm, skull, calf, etc.

In order to obtain more realistic humanoid avatars, we need more sophisti-
cated geometrical data on the body parts and some necessary accessories, like
hairs, clothes, etc. The upper body and the clothes are normally located at
the joint vl5. Suppose that the corresponding VRML file is stored as ”l5.wrl”.
Add the data of upper body and the clothes can be like this:

......

DEF hanim_l5 Segment {

name "l5"

children [

DEF hanim_l5 Inline { url "l5.wrl" }

......

Moreover, the hairs should be located at the skull tip site of the skull base
joint as follows:

.....

DEF hanim_vl5 Joint {

name "vl5"

center 0.0028 1.0568 -0.0776

children [

DEF hanim_skullbase Joint {

name "skullbase"

center 0.0044 1.6209 0.0236

children [

DEF hanim_skull Segment {

name "skull"

children [

DEF hanim_skull

Inline { url "skull.wrl" }

DEF hanim_skull_tip Site {

name "skull_tip"

translation 0.0050 1.7504 0.0055

children [

Inline { url "hair.wrl" }

]

}

A H-anim 1.1 compliant avatar with hairs and clothes is shown in Figure 8.3.

AVATAR AUTHORING TOOLS 103

Fig. 8.3 A H-anim 1.1 Compliant Avatar with Hairs and Clothes

8.4 AVATAR AUTHORING TOOLS

8.4.1 Curious Labs Poser 4

Poser 4 by Curious Labs is a 3D-character animation and design tool for
avatars design. [Curious Labs] The program provides plentiful libraries of pose
settings, facial expressions, hand gestures, and swappable clothing. Users can
create images, movies, and posed 3D figures from a diverse collection of fully
articulated 3D human and animal models. More usefully, poser 4 supports
the export of avatar files with VRML format or H-anim format. However, the
sizes of the exported files from poser are usually too large, say, 2 MB or more,
which would be a problem for any significant use over the Web. A screenshot
of Poser 4 is shown in Figure 8.4.1.

8.4.2 Blaxxun Avatar Studio

Blaxxun Avatar Studio is a tool for design of animated and texture-based
VRML avatars. Blaxxun Avatar studio has not yet support of the export
of the avatars file with H-anim compliant format. The avatars designed by
Avatar Studio are non H-anim compliant ones. Using Avatar Studio, avatars
can be designed with large range of body sizes, individual proportions, skin,
hair and eye color. Once the avatar’s basic properties are determined, she/he
can be dressed from a large wardrobe and furnished with an extensive selection

104 AVATARS DESIGN

Fig. 8.4 A Screenshot of Poser 4

Fig. 8.5 A Screenshot of Avatar Studio

of accessories, like sunglasses or handbags. Avatar Studio also supports the
”animations editor,” a tool for creating gestures and movements which are
then assigned to certain key-words. The typical keys for the gestures are:
hello, hey, yes, smile, frown, no, and bye. A screenshot of Blaxxun Avatar
Studio is shown in Figure 8.4.2. Avatars designed by Blaxxun Avatar Studio
are texture-based ones. Therefore, the faces and clothes of the avatars can be
changed by editing the corresponding texture files. For example, Figure 8.4.2
shows the soccer player avatar ”blue2”, whose texture file for the face and the
clothes is shown in Figure 8.4.2.

AVATAR AUTHORING TOOLS 105

Fig. 8.6 Soccer Player Avatar blue2

Fig. 8.7 Texture of Soccer Player Avatar blue2

106 AVATARS DESIGN

8.5 AVATAR ANIMATION CONTROL IN DLP

Humanoid avatars can be controlled by using the get/set-predicates in DLP,
like those are shown in WASP soccer games. They can move to certain po-
sitions by the set-position-predicates, or turn to certain orientation by the
set-rotation-predicates, on those humanoid avatars. These humanoid avatars
can be built based the H-anim specification. The avatar animation can be
achieved by setting the positions/rotations of the body parts of the humanoid
avatars with different time intervals.

Consider a humanoid avatar which is based on H-anim specification. Turn-
ing the left arm of the avatar to front can be realized by simplely setting the
rotation of the left shoulder joint hanim l shoulder to 〈1, 0, 0, 1.57〉 as follows,

setRotation(hanim_l_shoulder, 1, 0, 0, 1.57)

However, in order to achieve a smooth change of movement of the body
part, we have to introduce several interpolations between two rotations with
certain time interval control. Turning Object to a rotation 〈X,Y, Z,R〉 within
Time milliseconds with I interpolation can be achieved by the following DLP
program1:

turn_object(Object, rotation(X,Y,Z,R), Time, I):-

getRotation(Object,X1,Y1,Z1,R1),

count := 0,

incrementr := (R-R1)/I,

incrementx := (X-X1)/I,

incrementy := (Y-Y1)/I,

incrementz := (Z-Z1)/I,

sleeptime := Time*1000/I,

repeat,

Rnew is R1+incrementr*(count+1),

Xnew is X1+incrementx*(count+1),

Ynew is Y1+incrementy*(count+1),

Znew is Z1+incrementz*(count+1),

setRotation(Object,Xnew,Ynew,Znew,Rnew),

sleep(sleeptime),

++count,

abs(Rnew-R) =< abs(incrementr),

setRotation(Object,X,Y,Z,R).

Animation of avatars usually involves the movements of several body parts si-
multaneously. That would make the maintenance of the timing and sycroniza-

1In order to achieve a natural transition between two rotations, we need the slerp interpo-
lation on quatenions, which is explained the section 9.6.3

AVATAR ANIMATION CONTROL IN DLP 107

Fig. 8.8 Facial Animation

tion of the multiple threads which controls the body movements more com-
plicated. In Chapter 9 we will discuss a scripting language which can be used
to simplize the control of the animation of humanoid avatars.

One of the important issues of the avatar animation is the facial expression.
H-anim specification adopts the facial animation parameters (FAP), which are
first proposed in MPEG4. The following is a simple example which shows how
some facial expression, like eyebrow movement and smile can be realized by
basing on some ad hoc facial geometrical data. The facial expression is shown
in Figure 8.8.

eyebrow_move(l,Range):-

getSFVec3f(l_eyebrow,translation,X,Y,Z),

Y1 is Y + Range,

setSFVec3f(l_eyebrow,translation,X,Y1,Z).

eyebrow_move(r,Range):-

getSFVec3f(r_eyebrow,translation,X,Y,Z),

Y1 is Y + Range,

setSFVec3f(r_eyebrow,translation,X,Y1,Z).

smiling(Time):-

smile_point(2, Point2),

setMFVec3f(lower_lip_coordinate, point, Point2),

sleep(Time),

smile_point(1, Point1),

setMFVec3f(lower_lip_coordinate, point, Point1).

smile_point(1,SmilePoint) :-

SmilePoint = [[0.0381, 0.0312, -5.0E-4],

[0.015, 0.0162, -0.0204],

[0.015, 0.03, 0.0],

[0.0215, 1.0E-4, -8.0E-4],

[-0.015, 0.0162, -0.0204],

108 AVATARS DESIGN

[-0.0381, 0.0312, -5.0E-4],

[-0.015, 0.03, 0.0],

[-0.0215, 1.0E-4, -8.0E-4]].

smile_point(2,SmilePoint):-

SmilePoint = [[0.04810,0.03920,-0.00050],

[0.01500,0.00020,-0.02040],

[0.01500,0.01400,0.00000],

[0.02150,-0.01610,-0.00080],

[-0.01500,0.00020,-0.02040],

[-0.04810,0.03920,-0.00050],

[-0.01500,0.01400,0.00000],

[-0.02150,-0.01610,-0.00080]].

Exercises

8.1 Design a H-anim 1.1 compliant avatar for the soccer playing agents.
The avatar should be able to be controlled in DLP to show the following
gestures: kicking, greeting, shouting, and ball-holding.

8.2 Design a texture-based humannoid avatar, by using your own photo as
the texture of the avatar’s face.

8.3 Extend the facial animation example with more facial expressions.

