
9
STEP : a Scripting

Language for Embodied
Agents

9.1 MOTIVATION

Embodied agents are autonomous agents which have bodies by which the
agents can perceive their world directly through sensors and act on the world
directly through effectors. Embodied agents whose experienced worlds are
located in real environments, are usually called cognitive robots. Web agents
are embodied agents whose experienced worlds are the Web; typically, they
act and collaborate in networked virtual environments. In addition, 3D web
agents are embodied agents whose 3D avatars can interact with each other or
with users via Web browsers[Huang et al., 2000].

Embodied agents usually interact with users or each other via multimodal
communicative acts, which can be non-verbal or verbal. Gestures, postures
and facial expressions are typical non-verbal communicative acts. In general,
specifying communicative acts for embodied agents is not easy; they often
require a lot of geometrical data and detailed movement equations, say, for
the specification of gestures.

In [Huang et al., 2002b] we propose the scripting language STEP (Script-
ing Technology for Embodied Persona), in particular for communicative acts
of embodied agents. At present, we focus on aspects of the specification and
modeling of gestures and postures for 3D web agents. However, STEP can
be extended for other communicative acts, like facial expressions, speech, and
other types of embodied agents, like cognitive robots. Scripting languages are
to a certain extent simplified languages which ease the task of computation
and reasoning. One of the main advantages of using scripting languages is that

109

110 STEP : A SCRIPTING LANGUAGE FOR EMBODIED AGENTS

the specification of communicative acts can be separated from the programs
which specify the agent architecture and mental state reasoning. Thus, chang-
ing the specification of communicative acts doesn’t require to re-program the
agent.

The avatars of 3D web agents are built in the Virtual Reality Modeling
Language (VRML). These avatars are usually humanoid-like ones. We have
implemented the proposed scripting language for H-anim based humanoids in
the distributed logic programming language DLP.

In this chapter, we discuss how STEP can be used for embodied agents.
STEP introduces a Prolog-like syntax, which makes it compatible with most
standard logic programming languages, whereas the formal semantics of STEP
is based on dynamic logic [Harel, 1984]. Thus, STEP has a solid semantic
foundation, in spite of a rich number of variants of the compositional operators
and interaction facilities on worlds.

9.2 PRINCIPLES

We design the scripting language primarily for the specification of commu-
nicative acts for embodied agents. Namely, we separate external-oriented
communicative acts from internal changes of the mental states of embodied
agents because the former involves only geometrical changes of the body ob-
jects and the natural transition of the actions, whereas the latter involves
more complicated computation and reasoning. Of course, a question is: why
not use the same scripting language for both external gestures and internal
agent specification? Our answer is: the scripting language is designed to be a
simplified, user-friendly specification language for embodied agents, whereas
the formalization of intelligent agents requires a powerful specification and
programming language. It’s not our intention to design a scripting language
with fully-functional computation facilities, like other programming languages
as Java, Prolog or DLP. A scripting language should be interoperable with
a fully powered agent implementation language, but offer a rather easy way
for authoring. Although communicative acts are the result of the internal
reasoning of embodied agents, they do not need the same expressiveness of
a general programming language. However, we do require that a scripting
language should be able to interact with mental states of embodied agents in
some ways, which will be discussed in more detail later.

We consider the following design principles for a scripting language.

Principle 1: Convenience As mentioned, the specification of communicative
acts, like gestures and facial expressions usually involve a lot of geometrical
data, like using ROUTE statements in VRML, or movement equations, like
those in computer graphics. A scripting language should hide those geomet-
rical difficulties, so that non-professional authors can use it in a natural way.

PRINCIPLES 111

For example, suppose that authors want to specify that an agent turns his
left arm forward slowly. It can be specified like this:

turn(Agent, left_arm, front, slow)

It should not be necessary to specify it as follows, which requires knowledge
of a coordination system, rotation axis, etc.

turn(Agent, left_arm, rotation(1,0,0,1.57), 3)

One of the implications of this principle is that embodied agents should
be aware of their context. Namely, they should be able to understand what
certain indications mean, like the directions ’left’ and ’right’, or the body
parts ’left arm’, etc.

Principle 2: Compositional Semantics Specification of composite actions, based
on existing components. For example, an action of an agent which turns his
arms forward slowly, can be defined in terms of two primitive actions: turn-
left-arm and turn-right-arm, like:

par([turn(Agent, left_arm, front, slow),

turn(Agent, right_arm, front, slow)])

Typical composite operators for actions are sequence action seq , parallel
action par, repeat action repeat, which are used in dynamic logics [Harel, 1984].

Principle 3: Re-definability Scripting actions (i.e.,composite actions), can be
defined in terms of other defined actions explicitly. Namely, the scripting
language should be a rule-based specification system. Scripting actions are
defined with their own names. These defined actions can be re-used for other
scripting actions. For example, if we have defined two scripting actions run
and kick, then a new action run then kick can be defined in terms of run
and kick :

run_then_kick(Agent)=

seq([script(run(Agent)), script(kick(Agent))]).

which can be specified in a Prolog-like syntax:

script(run_then_kick(Agent), Action):-

Action = seq([script(run(Agent)),script(kick(Agent))]).

Principle 4: Parametrization Scripting actions can be adapted to be other
actions. Namely, actions can be specified in terms of how these actions cause
changes over time to each individual degree of freedom, which is proposed by
Perlin and Goldberg in [Perlin and Goldberg, 1996]. For example, suppose
that we define a scripting action run: we know that running can be done at
different paces. It can be a ’fast-run’ or ’slow-run’. We should not define all

112 STEP : A SCRIPTING LANGUAGE FOR EMBODIED AGENTS

of the run actions for particular paces. We can define the action ’run’ with
respect to a degree of freedom ’tempo’. Changing the tempo for a generic
run action should be enough to achieve a run action with different paces.
Another method of parametrization is to introduce variables or parameters in
the names of scripting actions, which allows for a similar action with different
values. That is one of the reasons why we introduce Prolog-like syntax in
STEP.

Principle 5: Interaction Scripting actions should be able to interact with,
more exactly, perceive the world, including embodied agents’ mental states,
to decide whether or not it should continue the current action, or change to
other actions, or stop the current action. This kind of interaction modes can
be achieved by the introduction of high-level interaction operators, as defined
in dynamic logic. The operator ’test’ and the operator ’conditional’ are useful
for the interaction between the actions and the states.

9.3 SCRIPTING LANGUAGE STEP

In this section, we discuss the general aspects of the scripting language STEP.

9.3.1 Reference Systems

Direction Reference The reference system in STEP is based on the H-anim
specification: namely, the initial humanoid position should be modeled in a
standing position, facing in the +Z direction with +Y up and +X to the
humanoid’s left. The origin 〈0, 0, 0〉 is located at ground level, between the
humanoid’s feet. The arms should be straight and parallel to the sides of the
body with the palms of the hands facing inwards towards the thighs.

Based on the standard pose of the humanoid, we can define the direction
reference system as sketched in figure 9.1. The direction reference system is
based on these three dimensions: front vs. back which corresponds to the
Z-axis, up vs. down which corresponds to the Y-axis, and left vs. right which
corresponds to the X-axis. Based on these three dimensions, we can introduce
a more natural-language-like direction reference scheme, say, turning left-arm
to ’front-up’, is to turn the left-arm such that the front-end of the arm will
point to the up front direction. Figure 9.2 shows several combinations of
directions based on these three dimensions for the left-arm. The direction
references for other body parts are similar. These combinations are designed
for convenience and are discussed in Section 9.2. However, they are in general
not sufficient for more complex applications. To solve this kind of problem, we
introduce interpolations with respect to the mentioned direction references.
For instance, the direction ’left front2’ is referred to as one which is located

SCRIPTING LANGUAGE STEP 113

Fig. 9.1 Direction Reference for Humanoid

114 STEP : A SCRIPTING LANGUAGE FOR EMBODIED AGENTS

Fig. 9.2 Combination of the Directions for Left Arm

between ’left front’ and ’left’, which is shown in Figure 9.2. Natural-language-
like references are convenient for authors to specify scripting actions, since
they do not require the author to have a detailed knowledge of reference
systems in VRML. Moreover, the proposed scripting language also supports
the orginal VRML reference system, which is useful for experienced authors.
Directions can also be specified to be a four-place tuple 〈X,Y, Z,R〉, say,
rotation(1, 0, 0, 1.57).

Body Reference An H-anim specification contains a set of Joint nodes that
are arranged to form a hierarchy. Each Joint node can contain other Joint
nodes and may also contain a Segment node which describes the body part
associated with that joint. Each Segment can also have a number of Site
nodes, which define locations relative to the segment. Sites can be used for
attaching accessories, like hat, clothing and jewelry. In addition, they can
be used to define eye points and viewpoint locations. Each Segment node
can have a number of Displacer nodes, that specify which vertices within the
segment correspond to a particular feature or configuration of vertices.

Figure 9.3 shows several typical joints of humanoids. Therefore, turning
body parts of humanoids implies the setting of the relevant joint’s rotation.
Body moving means the setting of the HumanoidRoot to a new position. For
instance, the action ’turning the left-arm to the front slowly’ is specified as:

SCRIPTING LANGUAGE STEP 115

Fig. 9.3 Typical Joints for Humanoid

116 STEP : A SCRIPTING LANGUAGE FOR EMBODIED AGENTS

turn(Agent, l_shoulder, front, slow)

Time Reference STEP has the same time reference system as that in VRML.
For example, the action turning the left arm to the front in 2 seconds can be
specified as:

turn(Agent, l_shoulder, front, time(2, second))

This kind of explicit specification of duration in scripting actions does not
satisfy the parametrization principle. Therefore, we introduce a more flexible
time reference system based on the notions of beat and tempo. A beat is a
time interval for body movements, whereas the tempo is the number of beats
per minute. By default, the tempo is set to 60. Namely, a beat corresponds
to a second by default. However, the tempo can be changed. Moreover, we
can define different speeds for body movements, say, the speed ’fast’ can be
defined as one beat, whereas the speed ’slow’ can be defined as three beats.

9.3.2 Primitive Actions and Composite Operators

Turn and move are the two main primitive actions for body movements. Turn
actions specify the change of the rotations of the body parts or the whole
body over time, whereas move actions specify the change of the positions of
the body parts or the whole body over time. A turn action is defined as
follows:

turn(Agent,BodyPart,Direction,Duration)

where Direction can be a natural-language-like direction like ’front’ or a
rotation value like ’rotation(1,0,0,3.14)’, Duration can be a speed name like
’fast’ or an explicit time specification, like ’time(2,second)’.

A move action is defined as:

move(Agent,BodyPart,Direction,Duration)

where Direction can be a natural-language-like direction, like ’front’, a posi-
tion value like ’position(1,0,10)’, or an increment value like ’increment(1,0,0)’.

Here are typical composite operators for scripting actions:

• Sequence operator ’seq’: the action seq([Action1, ...,Actionn]) denotes
a composite action in which Action1, ...,and Actionn are executed sequen-
tially, like:

seq([turn(agent,l_shoulder,front,fast),

turn(agent,r_shoulder,front,fast)])

• Parallel operator ’par’: the action par([Action1, ...,Actionn]) denotes a
composite action in which Action1, ...,and Actionn are executed simulta-
neously.

EXAMPLES 117

Fig. 9.4 Walk

• non-deterministic choice operator ’choice’: the action choice([Action1,

...,Actionn]) denotes a composite action in which one of the Action1,

...,and Actionn is executed.

• repeat operator ’repeat’: the action repeat(Action, T) denotes a compos-
ite action in which the Action is repeated T times.

9.3.3 High-level Interaction Operators

When using high-level interaction operators, scripting actions can directly
interact with internal states of embodies agents or with external states of
worlds. These interaction operators are based on a meta language which is
used to build embodied agents, say, in the distributed logic programming lan-
guage DLP. In the following, we use lower case Greek letters φ, ψ, χ to denote
formulas in the meta language. Examples of several higher-level interaction
operators:

• test: test(φ), check the state φ. If φ holds then skip, otherwise fail.

• execution: do(φ), make the state φ true, i.e. execute φ in the meta
language.

• conditional: if then else(φ,action1,action2).

• until: until(action,φ): take action until φ holds.

We have implemented the scripting language STEP in the distributed logic
programming language DLP.

9.4 EXAMPLES

9.4.1 Walk and its Variants

A walking posture can be simply expressed as a movement which exchanges
the following two main poses: a pose in which the left-arm/right-leg move
forward while the right-arm/left-leg move backward, and a pose in which the
right-arm/left-leg move forward while the left-arm/right-leg move backward.

118 STEP : A SCRIPTING LANGUAGE FOR EMBODIED AGENTS

The main poses and their linear interpolations are shown in Figure 9.4. The
walk action can be described in the scripting language as follows:

script(walk_pose(Agent), Action):-

Action = seq([par([

turn(Agent,r_shoulder,back_down2,fast),

turn(Agent,r_hip,front_down2,fast),

turn(Agent,l_shoulder,front_down2,fast),

turn(Agent,l_hip,back_down2,fast)]),

par([turn(Agent,l_shoulder,back_down2,fast),

turn(Agent,l_hip,front_down2,fast),

turn(Agent,r_shoulder,front_down2,fast),

turn(Agent,r_hip,back_down2,fast)])]).

Thus, a walk step can be described to be as a parallel action which consists
of the walking posture and the moving action (i.e., changing position) as
follows:

script(walk_forward_step(Agent),Action):-

Action= par([script_action(walk_pose(Agent)),

move(Agent,front,fast)]).

The step length can be a concrete value. For example, for the step length
with 0.7 meter, it can be defined as follows:

script(walk_forward_step07(Agent),Action):-

Action= par([script_action(walk_pose(Agent)),

move(Agent,increment(0.0,0.0,0.7),fast)]).

Alternatively, the step length can also be a variable like:

script(walk_forward_step0(Agent,StepLength),Action):-

Action = par([script_action(walk_pose(Agent)),

move(Agent,increment(0.0,0.0,StepLength),fast)]).

Therefore, the walking forwardN steps with the StepLength can be defined
as follows:

script(walk_forward(Agent,StepLength,N),Action):-

Action = repeat(script_action(

walk_forward_step0(Agent,StepLength)),N).

As mentioned above, the animations of the walk based on these definitions
are just simplified and approximated ones. As analysed in [Faure, 1997], a
realistic animation of the walk motions of human figure involves a lot of com-
putations which rely on a robust simulator where forward and inverse kine-
matics are combined with automatic collision detection and response. We do
not want to use the scripting language to achieve a fully realistic animation of

EXAMPLES 119

Fig. 9.5 Poses of Run

the walk action, because they are seldom necessary for most web applications.
However, we would like to point out that there does exist the possibility to
accommodate some inverse kinematics to improve the realism by using the
scripting language.

9.4.2 Run and its Deformation

The action ’run’ is similar to ’walk’, however, with a bigger wave of the lower-
arms and the lower-legs, which is shown in Figure 9.5a. As we can see from
the figure, the left lower-arm points to the direction ’front-up’ when the left
upper-arm points to the direction ’front down2’ during the run. Consider
the hierarchies of the body parts, we should not use the primitive action
turn(Agent, l elbow, front up, fast) but the primitive action turn(Agent, l elbow, front, fast),
for the direction of the left lower-arm should be defined with respect to the
default direction of its parent body part, i.e., the left arm (more exactly, the
joint l shoulder). That kind of re-direction would not cause big difficulties for
authoring, for the correct direction can be obtained by reducing the directions
of its parent body parts to be the default ones. As we can see in Figure 9.5b,
the lower-arm actually points to the direction ’front’.

The action ’run pose’ can be simply defined as an action which starts with a
basic run pose as shown in Figure 9.5b and then repeat the action ’walk pose’
for N times as follows:

script(basic_run_pose(Agent), Action):-

Action=par([turn(Agent,r_elbow,front,fast),

turn(Agent, l_elbow, front, fast),

turn(Agent, l_hip, front_down2, fast),

turn(Agent, r_hip, front_down2, fast),

turn(Agent, l_knee, back_down, fast),

turn(Agent, r_knee, back_down, fast)]).

script(run_pose(Agent,N),Action):-

Action = seq([script_action(basic_run_pose(Agent)),

repeat(script_action(walk_pose(Agent)),N)]).

120 STEP : A SCRIPTING LANGUAGE FOR EMBODIED AGENTS

Therefore, the action running forward N steps with the StepLength can
be defined in the scripting language as follows:

script(run(Agent, StepLength,N),Action):-

Action=seq([script_action(basic_run_pose(Agent)),

script_action(walk_forward(Agent,StepLength,N))]).

Actually, the action ’run’ may have a lot of variants. For instances, the
lower-arm may point to different directions. They would not necessarily point
to the direction ’front’. Therefore, we may define the action ’run’ with respect
to certain degrees of freedom. Here is an example to define a degree of freedom
with respect to the angle of the lower arms to achieve the deformation.

script(basic_run_pose_elbow(Agent,Elbow_Angle),Action):-

Action = par([

turn(Agent,r_elbow,rotation(1,0,0,Elbow_Angle),fast),

turn(Agent,l_elbow,rotation(1,0,0,Elbow_Angle),fast),

turn(Agent,l_hip,front_down2,fast),

turn(Agent,r_hip,front_down2,fast),

turn(Agent,l_knee,back_down,fast),

turn(Agent,r_knee,back_down,fast)]).

script(run_e(Agent,StepLength,N,Elbow_Angle),Action):-

Action = seq([script_action(

basic_run_pose_elbow(Agent,Elbow_Angle)),

script_action(walk_forward(Agent, StepLength, N))]).

9.4.3 Tai Chi

In this subsection, we will discuss an application example, the development
of an instructional VR for Tai Chi, illustrating how our approach allows for
the creation of reusable libraries of behavior patterns.

A Tai Chi exercise is a sequence of exercise stages. Each stage consists of
a group of postures. These postures can be defined in terms of their body
part movements. Figure 9.6 shows several typical postures of Tai Chi. For
instance, the beginning-posture and the push-down-posture can be defined as
follows:

script(taichi(Agent,beginning_posture),Action):-

Action =seq([

turn(Agent,l_hip,side1_down,fast),

turn(Agent,r_hip,side1_down,fast),

par([turn(Agent,l_shoulder,front,slow),

turn(Agent,r_shoulder,front,slow)])]).

script(taichi(Agent,push_down_posture),Action) :-

EXAMPLES 121

Fig. 9.6 Tai Chi

Action =seq([

par([turn(Agent,l_shoulder,front_down,slow),

turn(Agent,r_shoulder,front_down,slow),

turn(Agent,l_elbow,front_right2,slow),

turn(Agent,r_elbow,front_left2,slow)]),

par([turn(Agent,l_hip,left_front_down,slow),

turn(Agent,r_hip,right_front_down,slow),

turn(Agent,l_elbow,right_front_down,slow),

turn(Agent,r_shoulder,front_down2,slow),

turn(Agent,l_knee,back2_down,slow),

turn(Agent,r_knee,back2_down,slow)])]).

Those defined posture can be used to define the stages like this:

script(taichi(Agent, stage1), Action) :-

Action =seq([

script(taichi(Agent,beginnin_posture),

script(taichi(Agent,push_down_posture),

......

]).

Furthermore, those scripting actions can be used to define more complex
Tai Chi exercise as follows:

script(taichi(Agent), Action) :-

Action = seq([

do(display(’Taichi exercise ...~n’)),

script(taichi(Agent, stage1)),

122 STEP : A SCRIPTING LANGUAGE FOR EMBODIED AGENTS

script(taichi(Agent, stage2))

......

]).

Combined with the interaction operators, like do-operator, with built-in pred-
icates in mete-language, the instructional actions become more attractive.
Moveover, the agent names in those scripting actions are defined as variables.
These varibales can be instantiated with different agent names in different
applications. Thus, the same scripting actions can be re-used for different
avatars for different applications.

9.4.4 Interaction with Other Agents

Just consider a situation in which two agents have to move a ’heavy’ table
together. This scripting action ’moving-heavy-table’ can be designed to be
ones which consist of the following several steps (i.e., sub-actions): first walk
to the table, then hold the table, and finally move the table around. Using
the scripting language, it is not difficult to define those sub-actions, they can
be done just like the other examples above, like walk and run. A solution to
define the action ’moving-heavy-table’ which involves multiple agents can be
as follows 1:

script(move_heavy_table(Agent1,Agent2,Table,

NewPos), Action):-

Action = seq([par([

script(walk_to(Agent1,Table)),

script(walk_to(Agent2,Table))]),

par([script(hold(Agent1,Table,left)),

script(hold(Agent2,Table,right))]),

par([move(Agent1,NewPosition,slow),

move(Agent2,NewPosition,slow),

do(object_move(Table,NewPos,slow))

])]).

The solution above is not a good solution if we consider this action is a co-
operating action between two agents. Namely, this kind of actions should not
be achieved by this kind of pre-defined actions but by certain communica-
tive/negotiation procedures. Hence, the scripting action should be considered
as an action which involves only the agent itself but not other agents. Any-
thing the agent need from others can only be achieved via its communicative
actions with others or wait until certain conditions meet. Therefore, the
cooperating action ’moving-heavy-table’ should be defined by the following
procedure, first the agent walks to the table and holds one of the end of the

1We omit the details about the definitions of the actions like walk to, hold, etc.

XSTEP: THE XML-ENCODED STEP 123

table2, next, wait until the partner holds another end of the table, then moves
the table. It can be defined as follows:

script(move_heavy_table(Agent,Partner,

Table, NewPos), Action):-

Action=seq([script(walk_to(Agent,Table)),

if_then_else(not(hold(Partner,Table,left)),

script(hold(Agent,Table,left)),

script(hold(Agent,Table,right))),

until(wait,hold(Partner,Table,_)),

par([move(Agent,NewPos,slow),

do(object_move(Table,NewPos,slow))]

)]).

9.5 XSTEP: THE XML-ENCODED STEP

We are also developing XSTEP, an XML encoding for STEP. We use seq and
par tags as found in SMIL3, as well as action tags with appropriate attributes
for speed, direction and body parts involved. As an example, look at the
XSTEP specification of the walk action.

<action name="walk(Agent)">

<seq>

<par>

<turn actor="Agent" part="r_shoulder">

<dir value="back_down2"/>

<speed value="fast"/>

</turn>

<turn actor="Agent" part="r_hip">

<dir value="front_down2"/>

<speed value="fast"/>

</turn>

<turn actor="Agent" part="l_shoulder">

<speed value="fast"/>

<dir value="front_down2"/>

</turn>

<turn actor="Agent" part="l_hip">

<dir value="back_down2"/>

<speed value="fast"/>

</turn>

2Here we consider only a simplified scenario. We do not consider the deadlock problem
here, like the that in the philosopher dinner problem.
3http://www.w3.org/AudioVideo

124 STEP : A SCRIPTING LANGUAGE FOR EMBODIED AGENTS

</par>

......

</seq>

</action>

Similar as with the specification of dialog phrases, such a specification is
translated into the corresponding DLP code, which is loaded with the scene
it belongs to. For XSTEP we have developed an XSLT stylesheet, using the
Saxon4 package, that transforms an XSTEP specification into DLP. We plan
to incorporate XML-processing capabilities in DLP, so that such specifications
can be loaded dynamically.

9.6 IMPLEMENTATION ISSUES

We have implemented the scripting language STEP in the distributed logic
programming language DLP. In this section, we discuss several implementa-
tion and performance issues. First we will discuss the module architectures of
STEP . Scripting actions are defined as a sequence or parallel set of actions.
One of the main issues is how to implement parallel actions with a satisfying
performance. Another issue is which interpolation method should be used to
achieve smooth transitions from an initial state to a final state.

9.6.1 STEP Components

STEP is designed for multiple purpose use. It serves as an animation/action
engine, which can be embodied as a component in embodied agents, or can also
be located at the controlling component at XSTEP, the XML-based markup
language.

STEP consists of the following components:

• Action library: The action library is the collections of the scripting
actions, which can be of user defined or of system built-in.

• STEP ontology: The STEP ontology component defines the seman-
tic meanings of the STEP reference systems. So-called Ontology is a
description of the concepts or bodies of knowledge understood by a par-
ticular community and the relationships between those concepts. The
STEP body ontological specification is based on H-anim specification.
The STEP ontology component also defines the semantic meaning of
the direction reference system. For instance, the semantic interpreta-
tion of the direction ’front’ can be defined in the ontology component
as follows:

4http://saxon.sourceforge.com

IMPLEMENTATION ISSUES 125

Fig. 9.7 STEP and its interface with embodied agents

rotationParameter(_,front,rotation(1,0,0,-1.57)).

Namely, turning a body part to ’front’ is equal to setting its rotation
to (1, 0, 0, -1.57). Separated ontology specification component would
make STEP more convenient for the extension/change of its ontology.
It is also a solution to the maintenance of the interoperability of the
scripting langauge over the Web.

• STEP Kernel: The STEP kernel is the central controlling component
of STEP . It translates scripting actions into executable VRML/X3D
EAI commands based on the semantics of the action operators and the
ontological definitions of the reference terms. The STEP kernel and
the STEP ontology component are application-independent. The two
components together is called the STEP engine.

• STEP application interface: The STEP application interface com-
ponent offers the interface operators for users/applications. The script-
ing actions can be called by using these application interface operators.
They can be java-applet-based, or java-script-based, or XML-based.

The avatars of VRML/X3D-based embodied agents are displayed in a VRML/X3D
browser. These embodied agents are usually designed as java applets which
are embodied in the browser. They interact with virtual environments via
VRML/X3D External Application Interface (EAI). STEP is also designed as
the part of the java applets, which can be called by embodied agents via the
step interface component. STEP module architecture and its interface with
embodied agents is shown in Figure 9.7.

9.6.2 Parallelism and Synchronization

How to implement parallel actions with a satisfying performance is an impor-
tant issue for a scripting language. A naive solution is to create a new thread

126 STEP : A SCRIPTING LANGUAGE FOR EMBODIED AGENTS

Fig. 9.8 Processing Parallel Actions

IMPLEMENTATION ISSUES 127

for each component action of parallel actions. However, this naive solution
will result in a serious performance problem, because a lot of threads will be
created and killed frequently. Our solution to handle this problem is to create
only a limited number of threads, which are called parallel threads. The sys-
tem assigns component actions of parallel actions to one of the parallel threads
by a certain scheduling procedure. We have to consider the following issues
with respect to the scheduling procedure: the correctness of the scheduling
procedure and its performance. The former implies that the resulting ac-
tion should be semantically correct. It should be at least order-preserving.
Namely, an intended late action should not be executed before an intended
early action. In general, all actions should be executed in due time, with the
sense that they are never executed too early or too late.

In general, a set of composite sequential and parallel actions can be depicted
as an execution graph; each node in a graph represents either a sequential or a
parallel activity. Execution graphs indicate exactly when a particular action
is invoked or when (parallel) actions synchronize. Parallel actions can be
nested, i.e. a parallel action can contain other parallel activities. Therefore,
synchronization always takes place relative to the parent node in the execution
graph. This way, the scheduling and synchronization scheme as imposed by
the execution graph preserves the relative order of actions.

From a script point of view, a parallel action is finished when each of the
individual activities are done. However, action resources are reclaimed and
re-allocated incrementally. After synchronization of a particular activity in a
parallel action construct its resources can be re-used immediately for other
scripting purposes. Just consider a nested parallel action which consists of
several sequential and parallel sub-actions, like,

par([seq([A1, A2, A3]), seq([B1, par([C1, C2]), B2]),
par([D1, seq([E1, E2])])])

The procedure of the scheduling and synchronization is shown in Figure 9.8.

9.6.3 Rotation Interpolation

We use DLP to implement the scripting language STEP . One of the issues on
the implementation is to achieve the function of turn-object by introducing
an appropriate interpolation between the starting rotation and the ending
rotation.

Suppose that the object’s current rotation is

Rs = 〈X0, Y0, Z0, R0〉

and the ending rotation of the scripting action is

Re = 〈X,Y, Z,R〉,

128 STEP : A SCRIPTING LANGUAGE FOR EMBODIED AGENTS

and the number of interpolations is I. In STEP , we use slerp (spherical inter-
polation) on unit quaternions to solve this problem. Let Qs = 〈w0, x0, y0, z0〉
and Qe = 〈w, x, y, z〉 be the corresponding quaternions of the rotations Rs and
Re. The relation between a rotation 〈X,Y, Z,R〉 and a quaternion 〈w, x, y, z〉
is as follows:

w = cos(R/2).
x = X × sin(R/2).
y = Y × sin(R/2).
z = Z × sin(R/2).

The function slerp does a spherical linear interpolation between two quater-
nions Qs and Qe by an amount T ∈ [0, 1]:

slerp(T,Qs, Qe) = Rs × sin((1 − T) × Ω)/sin(Ω) +
Re × sin(T × Ω)/sin(Ω)

where cos(Ω) = Qs·Qe = w0×w+x0×x+y0×y+z0×z. See [Schoemake, 1985]
for more details of the background knowledge on quaternions and slerp.

One of the requirement to achieve a natural transition of the two rotations
is to introduce the non-linear interpolation between two rotations. STEP
also allows users to introduce their own non-linear interpolation by using the
enumerating type of interpolation operator. An example:

turnEx(Agent,l_shoulder,front,fast,

enum([0,0.1,0.15,0.2,0.8,1]))

would turn the agent’s left arm to the front via the interpolating points 0,
0.1, 0.15, 0.2,0.8,1.

Users can use the interaction operators do to calculate interpolating point
lists for their own interpolation function. Therefore, the enumerating list is
powerful enough to represent arbitrary discrete interpolation function.

9.7 CONCLUSIONS

In this chapter we have discussed the scripting language STEP for embodied
agents, in particular for their communicative acts, like gestures and postures.
Moreover, we have discussed principles of scripting language design for em-
bodied agents and several aspects of the application of the scripting language.

STEP is close to Perlin and Goldberg’s Improv system. In [Perlin and Goldberg, 1996],
Perlin and Goldberg propose Improv, which is a system for scripting inter-
active actors in virtual worlds. STEP is different from Perlin and Goldberg’s
in the following aspects: First, STEP is based on the H-anim specification,
thus, VRML-based, which is convenient for Web applications. Secondly, we

CONCLUSIONS 129

separate the scripting language from the agent architecture. Therefore, it’s
relatively easy for users to use the scripting language.

Prendinger et al. are also using a Prolog-based scripting approach for
animated characters but they focus on higher-level concepts such as affect
and social context[Prendiner et al., 2002]. STEP shares a number of interests
with the VHML(Virtual Human Markup Language) community5, which is
developing a suite of markup language for expressing humanoid behavior,
including facial animation, body animation, speech, emotional representation,
and multimedia. We see this activity as complementary to ours, since our
research proceeds from technical feasibility, that is how we can capture the
semantics of humanoid gestures and movements within our dynamic logic,
which is implemented on top of DLP.

5http://www.vhml.org

