
Vrije Universiteit Amsterdam

Master Thesis

HTML5 Cross-Platform Game
Development

Author:
Marek Janiszewski

Supervisors:
Dr. Frank Nack

Prof. Dr. Anton Eliens

A thesis submitted in fulfilment of the requirements
for the degree of MSc in Computer Science

November 2014

http://www.vu.nl

This page intentionally left blank.

Abstract

The noticeable technological advancements during last few years have had impact on

many aspects of our everyday life: mobile phones have become small entertainment

centres. Since many use them as gaming consoles, the game development market has

started to rise. The crucial aspect of a successful title lies within its substantial coverage

throughout different devices. Reaching such successful coverage is a matter of further

game development process, towards which this paper aims to contribute. In this paper,

I present and compare a number of cross-platform compilers. While the overview alone

indicates which cross-compiler may be appropriate for the needs of a given project, the

study in this paper reaches beyond that. I also present tools to support the development

process and using them I create a working title. It leads to a series of tests measuring

the quality of experience and showing that even very simple methods may have impact

on the end-user.

Acknowledgements

First of all I would like to thank my supervisors, Frank Nack and Anton Eliens, for

agreeing to look after this thesis and having to deal with my sloppy work attitude.

Special thanks to Anton for helping me during these 2 years at the VU and also changing

the way I look at code.

Specjalne podziȩkowania dla moich Rodziców i Siostry. Za wsparcie i wiarȩ do końca!

Last but not least I would like to thank all my friends I have met in Amsterdam: Lea,

Matteo and many others, for their help,support and all the great moments we had during

our adventure!

ii

| Contents

Abstract i

Acknowledgements ii

List of Figures v

1 Introduction 1

2 Background 5
2.1 Runtime Environments . 6

2.1.1 Web Browser . 6
2.1.2 Hybrid Applications . 6
2.1.3 Self Contained Runtime Environments 7

2.2 Cross Platform Compilers . 7
2.3 HTML5 . 8
2.4 JavaScript . 8

3 Frameworks Comparison 10
3.1 Phonegap . 11
3.2 CocoonJS . 13
3.3 Efficiency . 14

4 Game Development 20
4.1 Game Design . 20
4.2 Technologies . 21

4.2.1 Bower . 22
4.2.2 Grunt . 23
4.2.3 TexturePacker . 24

4.3 Architecture . 25
4.4 Cross Platform Deployment . 27

5 Discussion 29

6 Conclusions 31

A Code Samples 32

iii

Contents iv

B Online References 36

C Extra Libraries 38

Bibliography 40

| Figures

1.1 Time spent on mobile devices Bosomworth (2014) 2
1.2 Game development process . 3

2.1 Cross-platform tools awareness among developers B. Lawson (2012) 7

3.1 Icons used for tests . 14
3.2 Circles drawing test on canvas . 15
3.3 Stats.js info box . 15
3.4 iPhone 4 test results . 17
3.5 iPhone 5s test results . 17
3.6 Samsung Galaxy Note S8 test results . 18
3.7 iPad 4 test results . 18

4.1 The games user interface (main scene) . 21
4.2 Most popular languages on Github in 2014 Warner (2014) 22
4.3 Bower search results for âĂĲjqueryâĂİ . 23
4.4 Example content of a package.json file . 23
4.5 Animation spritesheet containing three frames 24
4.6 JSON file generated by TexturePacker . 25
4.7 Folder structure . 26

v

1 | Introduction

Due to widespread use of smartphones, they can be seen surrounding us almost every-

where now. It is very difficult not to notice more and more users and owners looking at

a small screen held in their hand. The technological progress that advances the possi-

bilities of a smartphone and makes them more and more popular can be observed each

year without possessing a specific knowledge about faster processors, bigger amounts of

memory, different screen sizes etc..

According to KantarWorldpanel (2013), the top 3 mobile operating systems are Android

(85%), iOS (11%), and Wndows Phone (3%). Niche products are BlackBerry Os, Tizen,

Firefox Os, Sailfish Os And Ubuntu touch.

The three major operating systems own their prominent places on the top of the sales to

the different platforms, that they offer one of the most important factor of their growing

popularity - the apps they provide.

Apps are usually small applications, which extend or add new functionalities to the

device. The applications can be obtained through shops available exclusively for the

following operating system platforms (J.Haag, 2012):

– iOS - Appstore

– BlackBerry - Blackberry world

– Android - Google Play

– Firefox OS - Firefox Marketplace

– Tizen - Tizen Store

– Windows Phone - Windows Phone Store

From rich variety of available apps they can be divided in different types Statista (2014).

In June 2014 the 5 most popular categories were:

– Games

1

Chapter 1. Introduction 2

– Education

– Business

– Lifestyle

– Entertainment

“Games” lead the most popular types as their total share of all downloaded apps in that

period was 19.06%.

With the evolution of smartphones, their increase in calculating power, memory, graphics

possibilities etc, people started using them as mobile handheld gaming consoles – 80%

of the total time spent using mobile phones is for using apps, and 32% for playing games.

Figure 1.1: Time spent on mobile devices Bosomworth (2014)

With such a significant part in the mobile market share, games seem to be a very tempting

area for investors and development studios alike. Great number of users is likely to

generate substantial revenue. As checked in August 2014, top mobile games like “Clash

of clans”1 , “Candy crush saga”2 or “Game of war: fire age”3 have set their daily revenue

level above 1 million dollars ThinkGaming (2014). What is worth mentioning is that all

these titles are freemium games - they can be downloaded and played for free, but to get

extra bonuses and perks, players need to pay micro-transactions.

Shipping an AAA title process consists of the following steps J. Busby (2004):

– planning
1http://www.supercell.net/games/view/clash-of-clans
2http://www.candycrushsaga.com/
3http://www.gameofwarapp.com/

http://www.supercell.net/games/view/clash-of-clans
http://www.candycrushsaga.com/
http://www.gameofwarapp.com/

Chapter 1. Introduction 3

– design phase

– development

– testing

– marketing

Figure 1.2: Game development process

Each process, depending on the size and complexity, requires a significant amount of

specialists from each field involved in order to ship the final product. To cover as big

market as possible it is necessary to provide a product for different platforms. Overcom-

ing the differences with multiple development environments and various code-bases, may

be possible by designing the game first and later on deploying it using cross-platform

compilers.

Observations of the global widespread of the mobile market and game apps popularity

brought up the following research question into focus:

1. Which cross-platform compilers to use for fast and efficient game development?

The hardware differences between mobile devices also derived further research problems:

2. Can “building” tools help in overcoming the different efficiency between various

devices?

3. 3. If so, what is the impact on the quality of experience of the end-user?

This paper is organised as follows: chapter 2 presents the background information on

cross platform approach and describes the technologies used to achieve it in mobile

environment. Chapter 3 contains a comparison of cross platform compilers and presents

tests checking their efficiency. Chapter 4 describes the tools helpful in game development,

Chapter 1. Introduction 4

the architecture used in the HTML5 game created for the purpose of this thesis and a

method for optimizing the software with regards to a different hardware. It is followed

by a discussion on the results and a short summary.

2 | Background

Reaching nowadays as vast amount of targeted users as possible across such a variety of

available phone models and platforms can be achieved by implementing cross platform

support for the product. Cross platform means that the software concepts are imple-

mented and operated on multiple platforms PC-Mag (2013).

Such kind of software may be divided into two types:

– requiring individual building or compilation for each supported device

– directly running on any platform without special preparation, e.g. a software writ-

ten in an interpreted language or a pre-compiled portable bytecode for which the

interpreters or run-time packages are common (or standard) components of all

platforms PC-Mag (2013).

With current state of mobile platforms for delivering the first type of cross platform

software the team needs multiple skills. Most of the platforms require their applications

to be developed using specific programming languages and to be followed by certain

standards.

Using different languages requires various development environments. For example iOS

requires Objective-C1 with Xcode2 and on the other hand Android requires JAVA3 with

supported IDEs. Least popular platforms like Tizen, Firefox OS and Ubuntu Touch use

HTML5 and Javascript A. Charland (2011).

Such big variety of languages may require few development teams working simultaneously

on the same product, requiring even the smallest changes to be implemented by different

developers. It may also lead to different release dates for various platforms.

The other cross-platform approach can be divided into two types H. Heitkotter (2012):

– employing the runtime environment
1https://developer.apple.com/library/mac/documentation/cocoa/conceptual/

ProgrammingWithObjectiveC/Introduction/Introduction.html
2https://developer.apple.com/xcode/
3http://www.java.com/

5

https://developer.apple.com/library/mac/documentation/cocoa/conceptual/ProgrammingWithObjectiveC/Introduction/Introduction.html
https://developer.apple.com/library/mac/documentation/cocoa/conceptual/ProgrammingWithObjectiveC/Introduction/Introduction.html
https://developer.apple.com/xcode/
http://www.java.com/

Chapter 2. Background 6

– cross-platform compilers, generating platform-specific apps from a common code

base at compile time.

2.1 | Runtime Environments

The employed runtime environment interprets the app’s code at runtime and executes

it. It has to be specific for each mobile platform, while the app’s source code is platform-

independent.

Three different kinds of environment can be identified: the Web browser, a hybrid of

Web and native components, and self-contained environments H. Heitkotter (2012).

2.1.1 | Web Browser

Applications using the web browser as runtime environment are usually called mobile

web apps. Taking advantage of standardised mobile internet browsers support, there is

usually a single version required for different kind of devices. Most important feature of

this approach is to implement a fluid layout fitting various screen resolutions.

As such applications are accessed via the browser, they act just like regular websites.

This results in two main problems:

1. they cannot be installed on the phone as a separate app (in some devices there

may be a shortcut to a website saved as an icon, the iPhone is an example)

2. they do not have access to phone specific functionalities and widgets like notifica-

tions, usage of built-in hardware or cross application communication.

2.1.2 | Hybrid Applications

Hybrid approaches emerged from the lack of native functionalities Mahemoff (2011).

They work like the previously mentioned web apps using the browser runtime environ-

ment, but in addition are wrapped in a native engine. This extra layer allows making

API call specific for the device allowing taking advantage of hardware possibilities. Be-

cause of the native package they cannot be retrieved via a url address, thus, have to be

installed like regular apps in the operating system.

Chapter 2. Background 7

2.1.3 | Self Contained Runtime Environments

Self contained runtime environments are built from scratch and not based on any other

previously existing engines. There are designed and developed according to the needs

of apps they will be used at. An example of such an environment is Adobe Integrated

Runtime4, developed by Adobe Systems for building Rich Internet applications (RIA)

that can be run as desktop applications or on mobile devices. The RIA are programmed

using Adobe Flash5 , Apache Flex6 (formerly Adobe Flex), HTML, JavaScript and XML

Adobe (2014a).

2.2 | Cross Platform Compilers

Cross platform compilers are the tools that concentrate on translating a single source

code into native applications. These tools bridge the requirements of the native device

APIs with the chosen programming language of the single source code Research2guidance

(2014). They allow wrapping up an earlier developed HTML5 application and output a

package available for upload to different platforms.

Figure 2.1: Cross-platform tools awareness among developers B. Lawson (2012)

4http://get.adobe.com/air/
5http://get.adobe.com/pl/flashplayer/
6http://flex.apache.org/

http://get.adobe.com/air/
http://get.adobe.com/pl/flashplayer/
http://flex.apache.org/

Chapter 2. Background 8

2.3 | HTML5

HTML57 (HyperText Markup Language) is a mark-up language used to prepare websites

to be rendered by a web browser. It describes every element contained on a single page by

set of given specific tags, allowing to manipulate them and set up as desired by the user.

After almost 10 years of HTML48 , which was mostly focused on static presentations, in

2008 W3C (World Wide Web Consortium) presented a working draft of HTML5 (final

release is planned for 2014). The main difference between those two versions is the

focus on web applications. With the evolution of the Internet the pages have begun to

get more interactive and concentrate on the user generated content B. Lawson (2012).

Introduction of APIs for audio and video control, web storage, cross-document messaging,

etc allows developers to include such services without need of any third party plugins or

tools installed on the users’ device.

Among this rich variety of features, one needs special attention: canvas. It is an element

that allows for dynamic shapes and bitmaps rendering while using JavaScript. With its

image manipulation functionalities it facilitates the generation of graphs, presentations

and games directly in the browser, not requiring a plugin, such as Flash. It is very

important for the cross platform means, that canvas element is supported by almost

every browser on stationary machines and mobile devices CanIuse (2012).

2.4 | JavaScript

JavaScript9 is an interpreted programming language with object oriented capabilities.

It was developed at Netscape Communications in the mid 90’s. Despite some naming,

syntactic, and standard library similarities, JavaScript and Java are otherwise unrelated

and have very different semantics. The syntax of JavaScript is actually derived from

C, while the semantics and design are influenced by Self and Scheme programming lan-

guages Adobe (2007).

It is commonly used in web browsers, and in that context, the general purpose was

extended with objects allowing the scripts to interact with the user, control the web

browser and alter the document content that appears within the web browser window.

It is commonly called “client-side” JavaScript to emphasize that scripts are run by the

client computer rather than on the server.

In the mid 2000’s node.js10 was released, which introduces JavaScript also as a server
7http://www.w3.org/TR/html5/
8http://www.w3.org/TR/html4/
9https://developer.mozilla.org/en/docs/Web/JavaScript

10http://nodejs.org/

http://www.w3.org/TR/html5/
http://www.w3.org/TR/html4/
https://developer.mozilla.org/en/docs/Web/JavaScript
http://nodejs.org/

Chapter 2. Background 9

side language.

The language evolved quickly and has been standardised by the European Computer

Manufacturer’s Association (ECMA). Official name of JavaScript, according to ECMA-

262 standard is ECMAScript11.

Technologies described in this chapter tend to help covering the multiplatform environ-

ment. With their usage I will try to present answers to the previously stated research

questions. In the next chapter I will focus on the first one, regarding the choice of a

cross-platform compiler for mobile game development, by comparing available tools and

performing a set of tests checking their efficiency.

11http://www.ecmascript.org/

http://www.ecmascript.org/

3 | Frameworks Comparison

To determine which of the cross platform compilers may increase the efficiency of HTML5

game development I have created a simple game prototype checking their capabilities.

It allows testing the entire multiplatform development process with tasks (i.e. building,

setting up the work environment etc.), which may happen during the development phase

of a professional title served to an app store.

From the available group of cross platform development kits, as outlined in figure 6,

I have chosen two very popular compilers dedicated for HTML5 and JavaScript: Co-

coonJS1 and Phonegap2. The two were chosen because of their popularity and rich

support found across web pages. These compilers subject to many communities based

around programming boards such as Stackoverflow3 , which means that a plethora of

helpful hints and tutorials were created to move forward with app development.

In the tables below can be found a short comparison of features offered by chosen frame-

works, as both of them present a slightly different approach. Evaluation of efficiency

between these two tools is described afterwards.

As for cross platform game development, it may seem strange to omit the Unity3d. As

seen on figure 6, it is a very popular framework among developers. Many successful

games have been developed using Unity during 2014, including the multiplatform title

Hearthstone: Heroes of Warcraft4 , by Blizzard Entertainment. The decision to omit

Unity was the lack of canvas element, and also the price packages. Instead of canvas

it uses its own API, which is programmable using JavaScript or C#5 . The difference

between premium and free version are quite significant and can be seen under the fol-

lowing link: http://unity3d.com/unity/licenses. Unity has also its own “appstore”

but instead of games it offers tools, models or shaders, which come in handy during the

development phase.

1https://www.ludei.com/cocoonjs/
2http://phonegap.com/
3http://www.stackoverflow.com/
4http://us.battle.net/hearthstone/en/
5http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-334.pdf

10

http://unity3d.com/unity/licenses
https://www.ludei.com/cocoonjs/
http://phonegap.com/
http://www.stackoverflow.com/
http://us.battle.net/hearthstone/en/
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-334.pdf

Chapter 3. Frameworks Comparison 11

The following criterion were taken under consideration

1.License and costs

This criterion examines if the developer / company has to pay any extra costs regarding

to usage of framework, licensing issues or distribution

2.Available platforms

Which platforms are supported

3.Ease of development

Is the documentation sufficient enough for a quick start with the development process?

What is the quality of these documents? Are there any noticeable problems users were

facing?

4.Testing

How to test the app? What is necessary?

5.Deployment

Where can the app be distributed? What is the process?

3.1 | Phonegap

1.License and costs

Phonegap is free, open source and built on open standards. In 2014 Phonegap opened

Phonegap Build6 service in collaboration with Adobe. This service offers one private app

for free. From 9.99$ it is possible to extend the amount of apps to 25. Otherwise they

are hosted on a public GitHub repository. Adobe ID’s are also usable in Phonegap Build.

2.Available platforms

iOS, Android, Blackberry OS, Windows Phone, Ubuntu, Firefox OS. Unfortunately not

all native features are supported. The table provided at Adobe (2014c) presents a com-

patibility chart.

6https://build.phonegap.com/

https://build.phonegap.com/

Chapter 3. Frameworks Comparison 12

3.Ease of development

All apps are developed using HTML5, CSS and Javascript. First a proper SDK needs

to be installed, which in my case took some trouble and time. It requires working in

the command line and some features were flawed. To set up the environment it took me

some time before properly starting the development.

Documentation is available to the public (see Adobe (2014b)). Each part contains step

by step instructions, but as mentioned earlier, even with such hints I had few problems

with setting the SDK correctly.

A much appreciated feature is the possibility for users to write their own native plugins

in a language corresponding to the platform they want to support, and inject them to

their app.

4.Testing

Testing requires extra IDE’s for the given environment previously installed. Android

required Android Studio (Eclipse pre-configured with SDK) and for iOS is the X-code

necessary. I have tested the app only on these two platforms, because of the devices

available at the time of testing.

For Android there are two options available: testing on a device and in a simulator.

To test on a device only an USB cable connected to the phone is necessary. After few

lines in the command line, if the environment is set up correctly the app displays on the

mobile screen. Testing in a simulator requires some extra configuration in the Android

Studio. There are already few pre-made simulator devices, but to add new ones all the

parameters have to be set manually or downloaded from third party users willing to share

them.

iOS testing is only available through the built-in X-code simulator, due to Apple rules

regarding the apps.

[Update] After I have performed the tests and checked Phonegap again, in 2014, a sim-

ulator available for the phone was made available. It requires the proper SDK, and with

one command a virtual server to which the app connects is set up. This allows to directly

test apps on iOS and Android.

5.Deployment

After building the source, the app is available in proper directories. To publish, it takes

the same steps as the publishing of a native app.

Chapter 3. Frameworks Comparison 13

3.2 | CocoonJS

1.License and costs

CocoonJS is free, although not open source. An OpenSDK will be available to allow

developers to create their own extensions. For this moment to use such features as push

notifications, game centres, analytics, in-app purchases or advanced hardware features

the users have to apply through a form to become a premium user. Ludei (2014)

2.Available platforms

iOS, Android, Blackberry OS, Windows Phone, Firefox OS, Windows 8, Intel AppUp,

Tizen, nook, Amazon

3.Ease of development

CocoonJS was first designed to compile HTML5 games but with few major updates

added it has now has also Document Object Model support. It offers cloud based com-

pilations: the developer needs to only upload a directory containing the index.html file.

This means that the developer does not have to prepare any special environment like in

previous case, just to develop the app with the usual web manner.

As advertised “CocoonJS provides the most performant canvas 2D and WebGL imple-

mentation in the market for iOS and Android”.

It offers a custom runtime environment called “Webview+”, which is supposed to improve

canvas performance across different devices.

4.Testing

Developer apps for Android and iOS are available. The application can be run either

through the cloud based system if it was uploaded previously, or can be uploaded to the

phone via USB. iOS requires iTunes to upload the files, through the app manager.

A much valued feature is a built-in debugging console. It offers the same possibilities

as regular browsers like Chrome or Firefox. Messages can be logged and displayed and

the same applies in the case of warnings and errors. Also a built-in frames per second

display is available.

5.Deployment

After uploading the app to the cloud compiler files for selected platforms are available

for download in few minutes. With regards to the publishing, it takes the same steps as

while publishing a native app.

Chapter 3. Frameworks Comparison 14

3.3 | Efficiency

From the comparison it can be concluded that there are some differences between both

tools, such as testing or ease of development. Yet, a relevant issues has not yet been

addressed, namely the efficiency of each environment. Rendering efficiency is a very

important matter, not only for developers but also designers and finally end users.

A crucial aspect of efficiency with respect to rendering is the frame rate. It describes how

many frames (refreshed images) per second are being displayed on the screen. For video

games this has a significant meaning because of the heavy amount of different processes

computed by the processor and visual elements being displayed on the screen. Keeping

the frame rate around 30 frames per second or more can improve not only the quality of

experience but also the efficiency of the player M. Claypool (2009).

I have tested the efficiency of both framework on different devices (where possible) and

also simulators if necessary. The testing application was a simple drawing program,

checking how many images can be rendered until the frame rate drops to 30 frames per

second.

The test was based on two variants, both making use of a drawing program developed

especially for this purpose. In the first variant the same image, as described in Figure

7, was used in 3 different resolutions (i.e. 64X64, 128X128, and 256X256 pixels). The

programme checked for each resolution how many images can be rendered until the frame

rate drops under 30 frames per second.

Figure 3.1: Icons used for tests

In the second variant the same application was used to generate circles. In comparison

to rendering images, creating arches requires much more operations and is more complex

for the rendering unit Baulig (2011). Usually during app or game development it is not

necessary to draw such primitive shapes by hand but this will serve as a comparison to

Chapter 3. Frameworks Comparison 15

image drawing possibilities.

Figure 3.2: Circles drawing test on canvas

To measure the frame rate stats.js7 was used. It provides a simple info box that will help

monitoring the code performance.

Figure 3.3: Stats.js info box

It measures how much time passed from last call of the event and based on this, presents

current frame rate. Setting this in the rendering loops gives accurate information on the

state.

To check if the rate drops below 30 frames per second the code has been slightly up-

dated to pop up an alert box with current number of entities and with command to stop

drawing. The code is available in the appendix at the end of this paper.

Figure 3.4 - 3.7 present the results for the different hardware and software configurations

of the test runs. The tests were performed in webview mode. The specification of the

operating systems were:

7https://github.com/mrdoob/stats.js/

https://github.com/mrdoob/stats.js/

Chapter 3. Frameworks Comparison 16

iPhone 4:

– system: iOS 7

– CPU: 1 GHz Cortex-A8

– GPU: PowerVR SGX535

– memory: 16GB, 512 MB RAM

iPhone 5s:

– system: iOS 7

– CPU: Dual-core 1.3 GHz Cyclone (ARM v8-based)

– GPU: PowerVR G6430 (quad-core graphics)

– memory: 16GB, 1 GB RAM DDR3

Samsung Galaxy Note S8:

– system: Android OS v4.4 (KitKat)

– CPU: Quad-core 1.6 GHz Cortex-A9

– GPU: Mali-400MP4

– memory: 16GB, 2GB Ram

iPad 4:

– system: iOS 7

– CPU: Apple A6X APL5598

– GPU: Mali-400MP4

– memory: 16GB, 1GB Ram

Chapter 3. Frameworks Comparison 17

Figure 3.4: iPhone 4 test results

Figure 3.5: iPhone 5s test results

Chapter 3. Frameworks Comparison 18

Figure 3.6: Samsung Galaxy Note S8 test results

Figure 3.7: iPad 4 test results

Chapter 3. Frameworks Comparison 19

Looking directly on the results and picking the winner between Phonegap or CocoonJS

is not an easy choice. In most of the cases with Apple devices Phonegap is at the least

in the lead. Exception is the Samsung device with Android installed, where CocoonJS

behaved much better than the other test subject.

What is interesting to note is that on every device in the test using 64x64px images Co-

coon declassified its opponent. The results are significantly better. Being able to render

few thousand more images gives lots of opportunities in games, especially creating visual

effects, consisting of huge amounts of tiny particles.

Such huge difference in efficiency as described above, combined with previously described

features, such as dedicated webview+ mode, ease of development and easy deployment,

directed me on choosing CocoonJS for the further development involved in this work.

Except the efficiency, the deciding factor was the ease of installation and testing. Also as

mentioned earlier, the test involving rendering of circles got the lowest scores because the

big amount of calculations allowed only for the comparison in rough terms of quantity.

In the next chapter describing the process of creating my HTML5 game, I will take

advantage of these finidngs and describe a simple method to prepare the product for

different platforms.

4 | Game Development

In this chapter I describe the process of creating my game for the purpose of this paper.

It consists of the workflow description, architecture and useful tools to speed up the

multi-device development process.

The concluding paragraph will focus on testing a method developed for limiting the spe-

cial effects for this research. It will focus on measuring users’ quality of experience by

playing the same game on different devices, suited for given platforms, to help answer

the research questions regarding the usage of “build” tools to overcome the differences

between different devices and testing the impact on end users quality of experience.

4.1 | Game Design

The idea for my game was reasonably simple: to create an engagement for casual players,

allowing relaxing for few minutes while e.g. commuting.

The whole gameplay is very easy, even for those not spending their time on virtual enter-

tainment. A user has to connect as many squares from the same colour as possible within

20 turns. The more blocks are connected, the bigger the point multiplier, resulting in

getting higher scores. During each turn, the blocks that have been connected disappear

and the board fixes it position by adding new ones. Random colour fillings provides for

unpredictable combinations making the game more exciting. Example of the interface is

presented on figure 4.1.

Such an easy gameplay does not even require any extra instructions for the user. To learn

what to do at the beginning of the game, the player has only two squares on the screen,

which need to be connected. This will already provide the user with enough information

to carry on with the game. Short time needed for playing was also intended for carrying

out tests on end users measuring their quality of experience.

20

Chapter 4. Game Development 21

Figure 4.1: The games user interface (main scene)

4.2 | Technologies

For the development, earlier described CocoonJS was chosen. As the wrapper uses

JavaScript, only this language could have been used for production.

The choice of cross-compiler was not only based on the tests held in chapter 3.3. As seen

in the charts, CocoonJS was not in lead in all categories. Selection should be also based

on the workload and needs dictated by the developed project.

To automate and speed up the whole process I used few extra tools:

– Bower

– Grunt

– TexturePacker

Each of them is free (TexturePacker can be upgraded to premium version adding extra

features) and boosts up repeatable and monotonous steps being faced while working on

such a project.

It is important to add, that the tools presented here have no effect on the end product

(excluding plugins designed for preparing the code for different versions), and are used

Chapter 4. Game Development 22

only to improve the workflow in combination with the architecture described in section

4.3.

4.2.1 | Bower

As JavaScript is one of the most popular programming languages currently used (see

fig. 4.2), front-end development is at its best. Huge amount of libraries to choose is

available and all of them being updated frequently to fix with previous bugs or implement

compatibility between different browsers.

Figure 4.2: Most popular languages on Github in 2014 Warner (2014)

Keeping all the tools in a project up to date may be a serious problem, especially when

it contains a number of different sources spread across Github or other repositories. To

help solving that problem Bower was introduced. It is a package manager responsible

for frontend libraries.

Built on top of node.js and npm requires just a few lines in the command line to work

and a json file containing the necessary packages.

Libraries can be searched for in two ways: either using the web interface of the compo-

nent library located at http://bower.io/search/ or from the console.

Bower automatically downloads the latest available version. It is possible to download

not only the newest build, but inside the bower.json file, user can determine which ver-

sion should be downloaded.

http://bower.io/search/

Chapter 4. Game Development 23

Figure 4.3: Bower search results for âĂĲjqueryâĂİ

4.2.2 | Grunt

Grunt is a JavaScript task-runner. It allows automating processes that are repeated

constantly throughout the development process. Its substantial community use and rich

documentation allows easily and quickly taking advantage of this helpful tool.

Figure 4.4: Example content of a package.json file

Plugins available to use are available for public browsing at http://gruntjs.com/

plugins.

One of the biggest advantages of Grunt is creating tasks, which define which plugins to

run. As an example it is possible to run under a single command such operations as:

1. create a build directory

2. minify all the images and copy them to the destination folder

3. check JavaScript code and if correct minify it, compress to a single file, rename the

sources inside HTML files

http://gruntjs.com/plugins
http://gruntjs.com/plugins

Chapter 4. Game Development 24

4. run a set of tests on the destination directory using Karma or Jasmine

5. upload to an ftp server if tests passed.

Although only these five steps as described take part, the amount of time saved on

building may increase drastically. Tasks like minifying images, files, uploading to an ftp

usually require external third party applications and user interaction, which get very

monotonous and as a result may decrease the work performance.

In subsequent part of this paper I will describe my simple plugin for preparing a config-

uration file to adjust the number of entities displayed inside the game.

4.2.3 | TexturePacker

While developing a game it often requires handling big amount of images. To reduce the

number of files and thereby decrease the number of calls and loading times it is possible

and convenient to use sprite sheets.

Sprite sheets allow any number of images to be stored in a single image, making the

game swifter to load and animations to work with easier P.Retting (2012).

While rendering an image on canvas using JavaScript the starting coordinates, width

and height need to be defined over the bitmap WC3Schools (2014). This allows putting

multiple images in one bitmap and defining which segment needs to be drawn.

Figure 4.5: Animation spritesheet containing three frames

Sprite sheets are especially helpful for animations, because of their ability to put multiple

frames in a single file P.Retting (2012). Manual process of creating such a set of images

requires significant time investment. Proper placement, including checking positions by

hand and putting them to a reasonable piece of code is a very consuming task.

TexturePacker allows loading multiple bitmaps, sorting them automatically using differ-

ent algorithms and delivering a finished sprite sheet, accompanied by code for a desired

platform. Currently it supports multiple game engines like Unity, Cocos2d, Flash and

Chapter 4. Game Development 25

many others. For HTML5 purposes it is possible to generate a JSON file containing the

necessary information on all frames that were included.

Figure 4.6: JSON file generated by TexturePacker

This notation allows easy adapting and manipulating generated code inside the engine.

As seen on figure 19, all filenames are given, which enables to quickly identify the wanted

frame, size, width and height and to provide quick access to it without any trial and error

attempts.

4.3 | Architecture

Software architecture represents the system’s earliest set of design decisions. These early

decisions are the most difficult to be fulfilled correctly and the hardest to change later in

the development process. Also, they have the most far-reaching effects L. Bass (2003).

Following architectural patterns may lead also into an increased efficiency during the

coding phase by introducing modularity and re-usable elements L. Bass (2003).

For game development on purpose of this work I have chosen the concept presented by

Przemyslaw Sikorski1 , an HTML5 game developer, author of the award winning game

Qbqbqb2 . Providing clear separation of concepts, allows easy code maintenance and full

control over the game. It uses two external libraries:

– underscore.js3 - provides different heavily used “everyday” tasks out of the box,

without the necessity of writing and extending object functionalities from scratch.
1http://rezoner.tumblr.com/
2http://qbqbqb.rezoner.net/
3http://underscorejs.org/

http://rezoner.tumblr.com/
http://qbqbqb.rezoner.net/
http://underscorejs.org/

Chapter 4. Game Development 26

As an example: retrieving first or last elements from array, extending objects,

cloning etc.

– canvas query4 - provides jquery-like chaining, and manages event handling

The heart of the engine is the “Application” (application.js). Main function is to initialize

the canvas, create loaders and assets (explained further). It also dispatches the events

during runtime, which saves lots of effort dealing with timing events.

Next very important part is the “Scene” (scene.js). Scenes describe a state of a game

such as menu screen, ending credits, main game etc.

Each element of the game: tree, cloud, player, points etc. are treated as entities. All of

Figure 4.7: Folder structure

them have their own private properties but also share common methods: step and render.

Step event contains the logic being updated and every frame and render describes what

should be performed during the rendering phase. With this approach the game can call

all entities currently created and perform given steps on them while in the game loop.

It is not important what type it is, for the program it is just an entity that needs to be

updated.

Assets are external media that need to be loaded, for example images, audio, video.

While loading these types requires some extra code it is helpful to have a wrapper con-

taining all the important pieces while not having to repeat redundant lines of code.

As it is easy to observe, this set of elements provides basic functionalities for quick scaf-

folding and prototyping. It is not as rich as ready out of the box frameworks such as

Impact5 or Phaser6 but those actions allow for a complete control over every element.
4http://canvasquery.com/
5http://impactjs.com/
6http://phaser.io/

http://canvasquery.com/
http://impactjs.com/
http://phaser.io/

Chapter 4. Game Development 27

Keeping the elements modular, furthermore, allows reusing them in other projects, mak-

ing future development easier Crockford (2008).

4.4 | Cross Platform Deployment

Based on previous tests from section 3.3 it is easy to observe that different devices may

be missing the amount of memory required to render a big amount of objects. In case of

the simple game all objects are quite small and static (section 3.1, they do not require

any calculations between rendering different frames), so I fit them under the category

of 64x64 pixels. To show the difference in action between iPhone 4 and iPhone 5s ,

after each move involving blocks of the same colour to disappear I have added a particle

system effect spawning a given number of small entities moving around the screen and

disappearing. It looks similar to a fireworks explosion.

Particle systems are used in computer graphics to produce animated effects such as

smoke, fire, explosions, water, electricity, flocking and many other natural and imagina-

tive special effects der Berg (2000). They are defined by multiple points in space and a

set of rules describing their behaviour, appearance E. Hastings (2009). The amount of

particles may vary from a single digit to thousands of entities. Very often is the case that

describing their behaviour may require a lot of calculations, and especially when dealing

which such big systems it may be hard for the processing unit.

Spawning particles creates after every move a big amount of entities. To stop this prob-

lem I have defined a variable inside the engine determining the amount of objects, which

can be displayed on the screen.

The architecture described previously allows creating containers for entities. One con-

tainer was used for “necessary objects” such as blocks, scores, buttons etc. The second

container is used for keeping the extra special effects separated for easier management.

Each time an event responsible for spawning particles is triggered, the difference between

the number of possible entities and the amount of objects in first container is calculated.

This allows easily determining how many new objects may be created. In case where the

limit is reached, a particle will be removed at random and will create space for a new

particle.

To speed up the deployment and avoid any unexpected errors regarding the amount of

entities a simple grunt plugin was used, allowing to determine the value of available

number of entities for a given device.

Adding the plugin to the grunt pipeline generates a JavaScript file with the given name

in the desired destination. According to the device type set in the task options, the

output file will contain a corresponding value.

Chapter 4. Game Development 28

As written in the Grunt documentation Grunt (2013) it is also possible to set differ-

ent targets for each plugin. Combining this with different tasks it is possible to set

commands like “build-android”, “build-iphone”, “build-ipad” etc. (example in Appendix

A). Such easy building configuration may increase the quality, save time, and at the

same time allows avoiding manual settings inside the code each time a build for different

platform has to be performed.

5 | Discussion

The final goal is to test the built game in public. I let a group of 10 people in the age

between 23-30 to play it on two different devices (iPhone 4 and iPhone 5s) with various

setting and check their opinion on the quality of experience.

Quality of experience is the overall acceptability of an application or service, as perceived

subjectively by the end-user A. Takahasi (2008). My questions asked to the testers was,

whether they noticed any difference between all of these games played on different devices.

I have not informed the end-users about any differences in settings, only about the models

of phones.

The first test was performed on the iPhone 5s running the blocks game with a very big

amount of spawning particles. Despite having lots of entities on the screen the frame

rate did not drop below 30 frames per second, so the game was running seamlessly.

The second part was to play the same game with the same number of entities using the

older version of iPhone. As observed on the rendering tests earlier, the possible numbers

of objects to draw had a significant difference. As for this attempt, while destroying few

blocks and spawning extra particles the frame rate was dropping below 30 frames per

second.

The last task was to play again on the iPhone 4 but this time with the limitations of

entities described in the previous chapter. Here the amount of spawned particles was

limited according to the device capabilities, providing smooth animations.

From the group of testers, 9 out of 10 have noticed a difference between the two versions

on iPhone 4. None of the testers has noticed a difference between versions on iPhone 5

and 4 with limitations being set up.

This test, even though performed on a very limited group of people, may show that simple

manipulations may have an impact of the performance of software running on different

mobile phones. In this case having a set of numbers for each type of deployment target

and a preconfigured plugin for building may help to prepare the app for various platforms

in a very short time.

Easy to notice, such methods should be planned during the design phase, allowing to

prepare assets and possible outcomes earlier. Otherwise it may appear to be difficult to

29

Chapter 5. Discussion 30

implement them during development without significant changes affecting the end user.

This method is just a basic indicator how to prepare the application. It can be explored

further by adding such functionalities as:

– prioritising entities - each object may have a different level of importance, based

on which if necessary they are removed in an ordered way

– better memory management - instead of removing entities every time, reuse them

– cross-platform tests - current tests were performed only on different versions of

the same device due to their availability. Other devices with different operating

systems should be tested as well

Also there may be different ideas how to implement the limiting of entities or add new

tools to the build pipeline to achieve the goal in a more automated way. The idea of using

the architecture recommended in this text is also only an indication. It is also possible to

explore among many other frameworks prepared especially for game development using

HTML5 such as:

– Impact

– Construct1

– Phaser

– Turbulenz2

and many others available online.

1https://www.scirra.com/
2http://biz.turbulenz.com/

https://www.scirra.com/
http://biz.turbulenz.com/

6 | Conclusions

In this paper I have tried to answer the following research questions:

1. Which cross-platform compilers to use for fast and efficient game development?

2. Can “building” tools help in overcoming the efficiency differences between different

devices?

3. If so, what is the impact on the quality of experience of the end-user?

Regarding the first question I have compared two popular frameworks among HTML5

game developers: Phonegap and CocoonJS. Describing their features and performing

basic efficiency tests, I have chosen CocoonJS for further development. As stated earlier,

CocoonJS is not the best available universal cross-compiler. The choice of the cross-

compiling tool should be based on its features and project requirements, which can be

fulfilled with selected compiler.

To answer the second problem, I have presented a simple Grunt plugin, allowing deter-

mining how many objects can be displayed on the screen, prepare the files for building

for different devices and a simple method to limit them in case of extensive spawning.

In order to check how does the limiting of entities affect the quality of experience, a series

of 10 tests was performed on real users. It showed that even such a simple method may

have an impact and bring value to the project.

The research made for the purpose of this thesis may help future game developers to fo-

cus on more efficiency-driven decisions during the design and development phase. There

is still much to improve and explore, like cross-platform compatibility regarding audio,

3d capabilities, user interactions, as the mobile game development process (especially

regarding HTML5) is for this moment receiving more attention. Despite the noise of

the attention remain numerous materials available for research as well as topics and

questions, which need more in-depth analysis. One of such examples may be rendering

using different JavaScript engines like V8 used by Chrome or Nitro in Safari. Such tasks

may require deeper understanding of compiling engines and diving inside compilation

processes of various browsers.

31

A | Code Samples

1 var draw = true;

2 var canvas = document.createElement(’canvas ’);

3

4 var width = window.innerWidth;

5 var height = window.innerHeight;

6

7 canvas.width = width;

8 canvas.height = height;

9 canvas.style.border = "1px solid";

10 document.body.appendChild(canvas);

11

12 var context = canvas.getContext(’2d’);

13

14 var stats = new Stats ();

15 stats.domElement.style.position = ’absolute ’;

16 stats.domElement.style.left = ’0px’;

17 stats.domElement.style.top = ’0px’;

18 stats.setMode(0);

19 console.log(stats.getFps ());

20 document.body.appendChild(stats.domElement);

21

22 var imageObj = new Image ();

23 imageObj.src = ’64x64.png’;

24 // imageObj.src = ’128x128.png ’;

25 // imageObj.src = ’256x256.png ’;

26 var images = [];

27 var image = function () {

28 this.src = imageObj;

29 this.posx = Math.random () * width;

30 this.posy = Math.random () * height;

31

32 return this;

33 }

34 stats.setFps (90);

35 var init = function () {

36 // Store the current transformation matrix

37 context.save();

32

Appendix A. Code Samples 33

38

39 // Use the identity matrix while clearing the canvas

40 context.setTransform (1, 0, 0, 1, 0, 0);

41 context.clearRect(0, 0, canvas.width , canvas.height);

42 stats.begin();

43 // Restore the transform

44 context.restore ();

45 for(var i=0; i<images.length; i++) {

46 context.drawImage(images[i].src , images[i].posx , images[i].posy);

47 }

48 if(draw) {

49 images.push(new image ());

50 }

51 if(stats.getFps () < 30 && draw) {

52 draw = !draw;

53 alert(images.length);

54 }

55 stats.end();

56 }

57 // shim layer with setTimeout fallback

58 window.requestAnimFrame = (function (){

59 return window.requestAnimationFrame ||

60 window.webkitRequestAnimationFrame ||

61 window.mozRequestAnimationFrame ||

62 function(callback){

63 window.setTimeout(callback , 1000 / 60);

64 };

65 })();

66

67

68 (function animloop (){

69

70 requestAnimFrame(animloop);

71 init();

72 })();

73 // place the rAF *before* the render () to assure as close to

74 // 60fps with the setTimeout fallback.

Listing A.1: Image rendering tests - main.js

1 module.exports = function (grunt) {

2 "use strict"

3

4 grunt.initConfig ({

5 builder: {

6 iphone: {

7 options: {

8 appName: ’Engine ’,

Appendix A. Code Samples 34

9 device: ’iphone ’,

10 destFile: ’config ’,

11 destDir: ’iphone -build’

12 }

13 },

14 android: {

15 options: {

16 appName: ’Engine ’,

17 device: ’android ’,

18 destFile: ’config ’,

19 destDir: ’android -build’

20 }

21 }

22 },

23 clean: {

24 tests: [

25 "test/output.txt"

26]

27 },

28 nodeunit: {

29 all: [’test/*_test.js’]

30 },

31 jshint: {

32 options: {

33 curly: true ,

34 eqeqeq: true ,

35 eqnull: true ,

36 browser: true ,

37 debug: true ,

38 forin: true ,

39 noarg: true ,

40 noempty: true ,

41 boss: true ,

42 loopfunc: true ,

43 evil: true ,

44 laxbreak: true ,

45 bitwise: true ,

46 strict: true ,

47 undef: true ,

48 unused: true ,

49 nonew: true ,

50 globals: {

51 process: true ,

52 module: true ,

53 require: true

54 }

55 },

56 main: [

Appendix A. Code Samples 35

57 ’tasks /**/*. js’,

58 ’test /**/*. js’

59]

60 }

61 });

62

63 grunt.loadTasks(’tasks’);

64

65 grunt.loadNpmTasks(’grunt -contrib -jshint ’);

66

67 grunt.loadNpmTasks(’grunt -contrib -clean ’);

68

69 grunt.loadNpmTasks(’grunt -contrib -nodeunit ’);

70

71 grunt.registerTask(’default ’, [’clean ’, ’jshint ’, ’builder ’, ’

nodeunit ’]);

72

73 grunt.registerTask(’build -iphone ’, [’clean’, ’jshint ’, ’builder:

iphone ’, ’nodeunit ’]);

74

75 grunt.registerTask(’build -android ’, [’clean’, ’jshint ’, ’builder:

android ’, ’nodeunit ’]);

76

77 grunt.registerTask(’test’, [’clean ’, ’nodeunit ’, ’clean ’]);

78

79 };

80 }

Listing A.2: Example of Grunts configuration file

B | Online References

1. Clash of Clans - http://www.supercell.net/games/view/clash-of-clans

2. Candy Crush Saga - http://www.candycrushsaga.com/

3. Game of War: Fire Age - http://www.gameofwarapp.com/

4. Objective C - https://developer.apple.com/library/mac/documentation/cocoa/

conceptual/ProgrammingWithObjectiveC/Introduction/Introduction.html

5. Xcode - https://developer.apple.com/xcode/

6. Java - https://www.java.com/

7. Adobe Integrated Runtime - http://get.adobe.com/air/

8. Adobe Flash - http://get.adobe.com/pl/flashplayer/

9. Apache Flex - http://flex.apache.org/

10. HTML5 - http://www.w3.org/TR/html5/

11. HTML4 - http://www.w3.org/TR/html4/

12. JavaScript - https://developer.mozilla.org/en/docs/Web/JavaScript

13. node.js - http://nodejs.org/

14. ECMAScript - http://www.ecmascript.org/

15. CocoonJS - https://www.ludei.com/cocoonjs/

16. Phonegap - http://phonegap.com/

17. Stackoverflow - http://www.stackoverflow.com/

18. Hearthstone: Heroes of Warcraft - http://us.battle.net/hearthstone/en/

19. C# - http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-334.

pdf

36

http://www.supercell.net/games/view/clash-of-clans
http://www.candycrushsaga.com/
http://www.gameofwarapp.com/
https://developer.apple.com/library/mac/documentation/cocoa/conceptual/ProgrammingWithObjectiveC/Introduction/Introduction.html
https://developer.apple.com/library/mac/documentation/cocoa/conceptual/ProgrammingWithObjectiveC/Introduction/Introduction.html
https://developer.apple.com/xcode/
https://www.java.com/
http://get.adobe.com/air/
http://get.adobe.com/pl/flashplayer/
http://flex.apache.org/
http://www.w3.org/TR/html5/
http://www.w3.org/TR/html4/
https://developer.mozilla.org/en/docs/Web/JavaScript
http://nodejs.org/
http://www.ecmascript.org/
https://www.ludei.com/cocoonjs/
http://phonegap.com/
http://www.stackoverflow.com/
http://us.battle.net/hearthstone/en/
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-334.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-334.pdf

Appendix B. Online References 37

20. Phonegap Build - https://build.phonegap.com/

21. Stats.js - https://github.com/mrdoob/stats.js/

22. Przemyslaw Sikorski - http://rezoner.tumblr.com/

23. Qbqbqb, the game - http://qbqbqb.rezoner.net/

24. underscore.js - http://underscorejs.org/

25. Canvas Query - http://canvasquery.com/

26. ImpactJS - http://impactjs.com/

27. Phaser - http://phaser.io/

28. Construct - https://www.scirra.com/

29. Turbulenz - http://biz.turbulenz.com/

https://build.phonegap.com/
https://github.com/mrdoob/stats.js/
http://rezoner.tumblr.com/
http://qbqbqb.rezoner.net/
http://underscorejs.org/
http://canvasquery.com/
http://impactjs.com/
http://phaser.io/
https://www.scirra.com/
http://biz.turbulenz.com/

C | Extra Libraries

Below is a list of extra JavaScript libraries not mentioned in this paper, but helpful

during the development process.

WebGL

To support 3D graphics it is possible to use WebGL on newer devices. Libraries listed

below provide wrappers and helpers not to deal with pure complicated syntax and allow

faster prototyping.

– ThreeJS - http://threejs.org/

– BabylonJS - http://www.babylonjs.com/

Audio

JavaScript does not provide easy methods for audio control. Libraries presented below

allow manipulating sounds, creating audiosprites etc.

– SoundJS - http://www.createjs.com/SoundJS

– Timbre.js - http://mohayonao.github.io/timbre/

– Howler - http://goldfirestudios.com/blog/104/howler.js-Modern-Web-Audio-Javascript-Library

Drawing

To take full advantage of drawing on the canvas element and creating different types of

animations requires many lines of code. These libraries help to deal with animations,

transitions etc.

– EaselJS - http://www.createjs.com/EaselJS

– KineticJS - http://kineticjs.com/

38

http://threejs.org/
http://www.babylonjs.com/
http://www.createjs.com/SoundJS
http://mohayonao.github.io/timbre/
http://goldfirestudios.com/blog/104/howler.js-Modern-Web-Audio-Javascript-Library
http://www.createjs.com/EaselJS
http://kineticjs.com/

Appendix B. Extra Libraries 39

– FabricJS - http://fabricjs.com/

– Raphael - http://raphaeljs.com/

– oCanvas - http://ocanvas.org/

Utility

In this category I have added just one library, which is very popular among JavaScript

developers. It helps managing tweening between values in a very easy way.

– TweenJS - http://www.createjs.com/TweenJS

http://fabricjs.com/
http://raphaeljs.com/
http://ocanvas.org/
http://www.createjs.com/TweenJS

Bibliography

A. Charland, B. L. (2011). Mobile application development: Web vs native. Mobile

Computing, 9. [Accessed November 2014].

A. Takahasi, D. Hands, V. B. (2008). Standardization activities in the itu for a qoe

assesment of iptv. IEEE in Communications Magazine, pages 78–84.

Adobe (2014a). Adobe integrated runtime. http://www.adobe.com/products/air/faq.html.

[Accessed November 2014].

Adobe (2014b). Phonegap documentation. http://docs.phonegap.com/en/3.5.0/index.html.

[Accessed November 2014].

Adobe (2014c). Phonegap supported features table.

http://phonegap.com/about/feature/. [Accessed November 2014].

Adobe, The Mozilla Foundation, O. S. A. (2007). Proposed ecmascript 4th edition

âĂŞ language overview. http://www.ecmascript.org/es4/spec/overview.pdf. [Accessed

November 2014].

B. Lawson, R. S. (2012). Introducing HTML5. New Riders, second edition.

Baulig, D. (2011). High performance ecmascript and html5 canvas.

http://www.danielbaulig.de/wp-content/uploads/2011/04/Bachelor-Thesis.pdf.

[Accessed November 2014].

Bosomworth, D. (2014). Mobile marketing statistics 2014.

http://www.smartinsights.com/mobile-marketing/mobile-marketing-

analytics/mobile-marketing-statistics/. [Accessed November 2014].

CanIuse (2012). Compatibility table for support of the html5 canvas element in desktop

and mobile browsers. http://caniuse.com/canvas. [Accessed November 2014].

Crockford, D. (2008). JavaScript: the good parts. O’Reilly Media.

40

Bibliography 41

der Berg, J. V. (2000). Building an advanced particle system. Game Developer Magazine,

pages 44–50.

E. Hastings, R. Guha, K. S. (2009). Interactive evolution of particle systems for computer

graphics and animation. In IEEE Transactions on Evolutionary Computation. IEEE

Press, New York.

Grunt (2013). Grunt documentation. http://gruntjs.com/configuring-tasks. [Accessed

November 2014].

H. Heitkotter, S. Hanschke, T. M. (2012). Evaluating cross-platform development ap-

proaches for mobile applications. In Web Information Systems and Technologies. 8th

International Conference. WEBIST.

J. Busby, Z. P. (2004). Mastering Unreal Technology: The Art of Level Design. Sams

Publishing.

J.Haag (2012). Mobile app development and distribution options.

http://www.adlnet.gov/mobile-app-development-and-distribution-options. [Accessed

November 2014].

KantarWorldpanel (2013). Kantar worldpanel comtechâĂŹs smartphone os market share

data. http://www.kantarworldpanel.com/global/smartphone-os-market-share. [Ac-

cessed November 2014].

L. Bass, P. Clements, R. K. (2003). Software Architecture in Practice. Addison-Wesley

Professional, second edition.

Ludei (2014). Cocoonjs feature list. https://www.ludei.com/cocoonjs/features/. [Ac-

cessed November 2014].

M. Claypool, K. C. (2009). Perspectives, frame rates and resolutions: itâĂŹs all in the

game. In Proceedings of the 4th International Conference on Foundations of Digital

Games.

Mahemoff, M. (2011). Html5 vs native: The mobile app debate.

http://www.html5rocks.com/en/mobile/nativedebate/. [Accessed November 2014].

PC-Mag (2013). Encyclopedia. http://www.pcmag.com/encyclopedia/term/40495/

cross-platform#fbid=aHfb3ldkqPq. [Accessed November 2014].

P.Retting (2012). Professional HTML5 Mobile Game Development. John Wiley and

Sons.

http://www.pcmag.com/encyclopedia/term/40495/cross-platform#fbid=aHfb3ldkqPq
http://www.pcmag.com/encyclopedia/term/40495/cross-platform#fbid=aHfb3ldkqPq

Bibliography 42

Research2guidance (2014). Cross platform app development tool benchmarking

2014. http://www.research2guidance.com/r2g/Cross-Platform-Tool-Benchmarking-

Report-2014.pdf. [Accessed November 2014].

Statista (2014). Most popular apple app store categories in september 2014, by share of

available apps. http://www.statista.com/statistics/270291/popular-categories-in-the-

app-store/. [Accessed November 2014].

ThinkGaming (2014). Top grossing ios games. http://thinkgaming.com/app-sales-data/.

[Accessed November 2014].

Warner, J. (2014). Top 100 most popular languages on github.

https://jaxbot.me/articles/github-most-popular-languages. [Accessed November

2014].

WC3Schools (2014). Html canvas drawimage method. http://www.w3schools.com/.

[Accessed November 2014].

	Abstract
	Acknowledgements
	List of Figures
	1 Introduction
	2 Background
	2.1 Runtime Environments
	2.1.1 Web Browser
	2.1.2 Hybrid Applications
	2.1.3 Self Contained Runtime Environments

	2.2 Cross Platform Compilers
	2.3 HTML5
	2.4 JavaScript

	3 Frameworks Comparison
	3.1 Phonegap
	3.2 CocoonJS
	3.3 Efficiency

	4 Game Development
	4.1 Game Design
	4.2 Technologies
	4.2.1 Bower
	4.2.2 Grunt
	4.2.3 TexturePacker

	4.3 Architecture
	4.4 Cross Platform Deployment

	5 Discussion
	6 Conclusions
	A Code Samples
	B Online References
	C Extra Libraries
	Bibliography

