topical media & game development
graphic-processing-site-examples-Topics-Fractals-and-L-Systems-Mandelbrot-Mandelbrot.pde / pde
The Mandelbrot Set
by Daniel Shiffman.
Simple rendering of the Mandelbrot set.
// Establish a range of values on the complex plane
// A different range will allow us to "zoom" in or out on the fractal
// float xmin = -1.5; float ymin = -.1; float wh = 0.15;
float xmin = -2.5;
float ymin = -2;
float wh = 4;
void setup() {
size(200, 200);
noLoop();
background(255);
}
void draw() {
loadPixels();
// Maximum number of iterations for each point on the complex plane
int maxiterations = 200;
// x goes from xmin to xmax
float xmax = xmin + wh;
// y goes from ymin to ymax
float ymax = ymin + wh;
// Calculate amount we increment x,y for each pixel
float dx = (xmax - xmin) / (width);
float dy = (ymax - ymin) / (height);
// Start y
float y = ymin;
for(int j = 0; j < height; j++) {
// Start x
float x = xmin;
for(int i = 0; i < width; i++) {
// Now we test, as we iterate z = z^2 + cm does z tend towards infinity?
float a = x;
float b = y;
int n = 0;
while (n < maxiterations) {
float aa = a * a;
float bb = b * b;
float twoab = 2.0 * a * b;
a = aa - bb + x;
b = twoab + y;
// Infinty in our finite world is simple, let's just consider it 16
if(aa + bb > 16.0) {
break; // Bail
}
n++;
}
// We color each pixel based on how long it takes to get to infinity
// If we never got there, let's pick the color black
if (n == maxiterations) {
pixels[i+j*width] = 0;
} else {
// Gosh, we could make fancy colors here if we wanted
pixels[i+j*width] = color(n*16 % 255);
}
x += dx;
}
y += dy;
}
updatePixels();
}
(C) Æliens
20/2/2008
You may not copy or print any of this material without explicit permission of the author or the publisher.
In case of other copyright issues, contact the author.