
Virus Containment
A game for Project Multimedia 2008

Bas Boterman, Sander Stolk, Teunis van Wijngaarden
{bboterm, ssstolk, teunis}@cs.vu.nl

Dept. Computer Science, Vrije Universiteit, Amsterdam, The Netherlands

February 22, 2008

1 Introduction

This document describes the usage, configuration, and operation of the game
Virus Containment. This game – in which the player fights against viruses
– is created for Project Multimedia at the VU University in Amsterdam. In
short, the goals of the developers were to:

• Experience creating a game,

• Learn programming C++, and

• Combining their different developer experiences.

Although the game is not very realistic, it does serve an educational
goal. Virus Containment is about protecting the (human) body, which is
threatened by viruses. Players should send special killers to the viruses in
the form of virus containers. Of course, reality is much more complex, the
game only touches it.

We – Bas Boterman, Sander Stolk and Teunis van Wijngaarden – are
students Computer Science, currently following master courses. Bas and
Sander specialize in internet and web technology and Teunis in multimedia.
In section 2 we will give an overview of the game, in section 3 we will show
how anyone can configure the game. How we programmed and structured
the game will be shown in section 4, possible improvements will be discussed
in section 5, and finally we will end with our evaluation (section 6).

2 The Game

2.1 Purpose

The purpose of the game is to protect your body by destroying the attacking
viruses. Viruses can be made harmless by special immune system defense

1



Virus Containment Project Multimedia 2008

cells, which we’ll call virus containers (or containers for short) from now on.
These containers are perfect fits for one specific virus, but not for others:
like a key to a lock, or in this case the other way around, like a fitting lock
around a key. When a virus comes into contact with a container, the virus
is pulled towards the container and is then made harmless, not being able to
reproduce anymore. If a virus manages to get near actual human cells (the
tissue), it has the ability to infect it. The virus penetrates into such a cell
and reproduces until the host cell explodes. The viruses are harmful to a
human’s body and need to be neutralized. Therefore we would like the user
to use the containers as the viruses’ enemy. In figure 1 you can see which
container can neutralize which virus. All pictures have a very distinctive
shape and color for easy matching. Plus each container looks exactly like a
perfect fit for its matching virus, which is of course the purpose they were
designed for.

Figure 1: Present viruses and their containers.

2.2 How to play

The main menu offers three options: starting a new game, viewing the
highscores, and viewing the credits. Since the last two options speak for
themselves, we will only discuss the game below.

Every level starts with a playfield filled with a set of viruses (Figure 2).
The amount of viruses and their positions are pre-defined for each level. The
bar at the top of the screen provides some useful information:

• Sent out tells you how many containers are active in the playfield
and how many are allowed in total.

• Time is the time remaining to fight the viruses. This differs for every
level.

• Score is the score, which increases after destroying a virus.

Furthermore, there are icons of containers on the bar. Click one of
these icons to get the indicated container in the playfield. To catch a virus,
drag the container in the virus’ path. When the virus is close enough, the

2



Virus Containment Project Multimedia 2008

container pulls the virus towards it. The proximity differs for every type of
container. Catching a virus results in a higher score! When you destroyed
all viruses, you’ll procede to the next level.

When a virus hits the tissue, there’s a chance on infection. That is
indicated by a dark spot on the tissue. After a while – depending on the
type of virus – the tissue opens up and more of the same viruses enter the
playfield. Don’t let this happen, because it takes you a lot more work to
fight all those viruses. When your time is up, or the amount of viruses on
the playfield is too large to fight, you are game-over. If you did a good job,
you are asked to enter your name for the highscore. Check the highscore to
see if you can call yourself one of the best Virus Containment players.

Figure 2: A playfield with a set of viruses.

3 Configuration

The game can be adjusted without having to change the code and rebuild
the program. This makes the game structured and it gives players the oppor-
tunity to easily create new levels or adjust the virus’/container’s behavior.
Hence, no programming skills are needed.

3



Virus Containment Project Multimedia 2008

[TIME]
Limit = 120

[CONTAINERS]
Limit = 20

[VIRUSES]
Number = 3

[VIRUS 1]
Type = 4
Positionx = 100
Positiony = 100

[VIRUS 2]
Type = 3
Positionx = 300
Positiony = 100

[VIRUS 3]
Type = 2
Positionx = 400
Positiony = 250

Figure 3: A level setup.

3.1 Creating Levels

The configuration of the different levels can be found in the directory:
/assets/data/. Levels are named Level #.ini (where # is the level num-
ber). The game reads in levels in numerical order until there are no more
level files in row (after which it assumes the game is won).

The ini-files contain information about the time, the maximum number
of containers, and the type and position of viruses. The example file (Figure
3) shows a level with:

• A time limit of 120 seconds, thus 2 minutes.

• A maximum container sent-out limit of 20.

• Three viruses: one of type 4, one of type 3, and one of type 2.

The Number of viruses should always be consistent with the configura-
tion of viruses below. If not, the behavior of the game is undefined. Also,
always stick to the format in the files of the original game (also the order!).
Try to find a balance between:

4



Virus Containment Project Multimedia 2008

[GRAPHICS]
Normal = assets/graphics/Virus 1.bmp

[AI]
PathLength = 1/8
ToTissue = false

[MOVEMENT]
Speed = 50

[INFECTION]
Rate = 0.3
Multiplier = 10

[SCORE]
Containment = 50

Figure 4: A Virustype setup.

• Time limit and number of viruses, i.e. the more viruses, the more time
is needed to contain them.

• Container limit and number of viruses, i.e. the more viruses, the higher
the limit.

• Number of viruses and their types, i.e. do not put many nasty viruses
in one field.

• Type of viruses and container limit, i.e. when you put viruses with
high multiplication in the field, also choose a high container limit.

• Type of viruses and y-position, i.e. position a virus that heads directly
to the tissue, high in the playfield.

3.2 Change Virus Behavior

The definitions of the virus type configuration can be found in the same
directory as where the levels are stored. Currently, there are four virus
types that describe four different looks of viruses and their type of behavior.
Figure 4 shows an example virus type:

• The Normal variable in the [GRAPHICS] section tells the game what
picture to use for the virus. The path can be relative to the game.

• The variables beneath [AI] define the direction to move. PathLength
tells the game how often the virus changes direction. ToTissue defines
if the virus heads directly downwards to the tissue or not.

5



Virus Containment Project Multimedia 2008

[GRAPHICS]
Normal = assets/graphics/Container 1.bmp
Icon = assets/graphics/Container 1 Icon.bmp

[MOVEMENT]
Speed = 10

[CONTAINMENT]
Distance = 15

Figure 5: A Containertype setup.

• In the [MOVEMENT] section the Speed is defined in pixels per second.

• The Rate variable in the [INFECTION] section gives the change that
the virus will infect once it hits the tissue. If it does not infect, it will
bounce. The Multiplier variable in this section defines how many
viruses will be created after an infected cell explodes. The time for
the cell to explode dependeds on this variable too.

• The ContainmentScore in the [SCORE] section defines the amount
that the player’s score is raised, when he or she contains this virus.

Again, please stick to the format and order in this file. Try to find a
balance between:

• PathLength and Speed, i.e. let viruses with a short path length move
fast.

• ToTissue and Speed, i.e. don’t let viruses that head directly to the
tissue move too fast.

• Infection Rate and Multiplier, i.e. if the change of infection is
low, choose a high multiplier (“it will almost never infect, but IF it
does. . . ”).

• AI, Movement, Infection, and Score, i.e. give a high score for nasty
viruses.

3.3 Changing Container Behavior

Although containers do not move on their own, like viruses do, they need
some configuration (Figure 5). As explained above containers can only catch
viruses that have the same type number.

6



Virus Containment Project Multimedia 2008

• Besides the Normal graphic that containers have in their [GRAPHICS]
section, there is also the Icon variable. This is the graphic that will
be displayed on the bar.

• Containers also have a Speed, defined in the [MOVEMENT] section.

• The Distance variable in the [CONTAINMENT] section defines how near
(in pixels) a virus should be, in order to be destroyed by this container.

Again, please stick to the format and order in this file. Try to find a
balance between:

• The nastiness of the virus and the containment distance, i.e. make a
nasty virus a bit easier to catch.

• The speed of the virus and container.

3.4 Changing Graphics, Music, and Sound Effects

All graphics and audio are stored in subfolders of /assets/. To change
the graphics, bitmap files (*.bmp) from the /assets/graphics/ folder can
be replaced by another bitmap file and these will be loaded in the game
without recompiling. We have chosen to use the RGB color #FF00FF as
transparent background color (as can be seen from figure 6). Same goes
for music and sound effects, these are in the folders /assets/music/ and
/assets/soundeffects/ respectively.

Figure 6: A virus and a container with transparent background.

4 Behind the Game

Virus Containment is programmed in a structured way, using classes. Every
class is placed in a separate file, so please check the source directory to get
more insight. In the header files is defined what a class can do. This sec-
tion describes the main structure of the game, and discusses some essential
elements in more depth.

4.1 Global structure

Below the global structure is described by explaining the most important
classes:

7



Virus Containment Project Multimedia 2008

Main This class is executed first. It sets some variables that have to do
with graphics, and it calls the draw(), logic() and input() functions of
Game.

Graphics This class handles all the graphics. Every class that has a
draw() function makes use of the Graphics object.

Game This class keeps track of the game state, which is splash screen,
main menu, win screen, lose screen, or ingame. The logic() function of
Game just calls logic() of the class that is used for the current game state.
The same goes for draw(). input() routes the input to the class of the
current game state.

MenuMain When the main menu is the current game state, logic() and
draw() of MenuMain are called by Game. This class handles everything that
has to do with the menu. The other menus do a similar thing.

Ingame Ingame is used when a new game is started. It loads a level and
sets variables in Info and Playfield. After that, it calls the logic(),
draw(), and input() function of Playfield and Bar.

Info The object of this class is the administration-object. It contains
information about the current level, the score, etc.

Playfield This class contains a list of viruses and containers that are active
in the game. It calls the logic() and draw() function of every entity that is
in the game. They act individually. Ingame can ask Playfield if the game
is lost or won. Playfield knows this by checking the number of viruses and
time remaining.

Bar This class is dedicated to display information (time, score, sent out,
etc.) in the top bar.

Tissue This class makes the tissue appear at the bottom of the playfield.
It contains an array of infected cells and can answer the question if a virus
collides with the tissue.

Virus A Virus moves all on its own, because the position is changed ran-
domly by logic().

8



Virus Containment Project Multimedia 2008

Container A container’s position is determined by the users input. That
input is routed to Playfield’s input() function, which alters the path of
the container dragged. The containers ask the playfield for a list of viruses.
When a virus gets near the container, he takes over control. He pulls the
virus to his own position and kills it.

EntityType, ContainerType and VirusType The characteristics of
viruses and containers are determined in the .ini files. These files are read
in during the game, and the information is stored in one of the classes above.
Because VirusType and ContainerType share some properties, they have
the same superclass EntityType.

Sound This class contains some basic functions for playing/stopping music
and sound effects.

Other Finally there are some classes that do not need explanation because
they speak for themselves, or do not play an important role. Those classes
are: Position, TimeStamp, Splash, and Font. Hence, we won’t discuss
these classes any further.

4.2 In Depth

4.2.1 Menus

The Menu class is responsible for all menus in the game. There are various
menus to be seen. These are the main menu, a win menu (i.e. you won the
game) a lose menu (i.e. game over) and a highscore menu (i.e. you played
so well you may enter your name for the hall of fame).

We have one class, which is the Menu class. This is an object which all
other menus use. It contains functions for drawing the nescessary graphics
and code to process input events like keys that are pressed on the keyboard
and mouse clicks, which are generated by the user. Also it provides a com-
fortable means to place text on the various menus.

The main menu (which can be found in the class MenuMain) is responsible
for the first menu after the splash screen. It’s not a very spectacular menu,
since it only displays the three options as stated above. The same goes for
the win and lose menu.

The highscore menu is a little bit different, since it has to load vari-
ous high scores from a file (assets/data/Highscores.sav) and displays
them on screen. Also it has the means to save new highscores by using the
saveHighscores() function.

9



Virus Containment Project Multimedia 2008

4.2.2 Ingame, Playfield and Viruses

Ingame is where the actual game happens. One (static) instance of Ingame
is used, and the function getIngame() can be used to access that instance.
Don’t forget to include ingame.h. The same construction is implemented
for Game.

With the initialization of Ingame (by the constructor) the Info object
is initialized and the containertypes and virustypes are created. The latter
use .ini files as their input.

After initialization by the constructor, the init() function of Ingame is
called. This function (re)sets the bar and playfield, and calls readLevel()
to read a level from a level .ini file. This function sets variables in Info
and adds viruses to the playfield.

Now, the bar and playfield are set up and the game is ready to start.
From now on the sequence is: draw, input, logic. This sequence is started
by Main and, if the gamestate is INGAME, passed to Ingame. What do these
functions do in Ingame?

Draw Just draws the bar and playfield.

Input Routes events to the bar and playfield.

Logic Calls the logic() function of the bar and playfield. This function
also checks if the game is won or lost and acts upon that by changing the
gamestate.

In fact, besides setting up the game and keeping the reference to Info,
the Ingame object just routes events and calls logic() and draw(). This
structured view makes programming easier. Let’s discuss the bar’s function-
ality.

Draw Gives the bar’s information to the graphics object. Therefore it
reads the information (score, time, sentout, etc.) from the Info object,
adds a position, and passes it through to the graphics object.

Input The player must be able to click the container icons. This function
handles the click events on the bar and puts new containers on the playfield.

Logic The Bar has no more functionality, so the logic() function is
empty.

The Playfield is the other class that plays an important role. This
Playfield holds the tissue and a number of containers and viruses. Besides
the initialization functions, the following functions are interesting.

10



Virus Containment Project Multimedia 2008

Draw Viruses and containers act on their own, so Playfield calls the
draw() function for every container and virus. It also calls Tissue’s draw()
function.

Input This function handles the dragging of containers. When the mouse
button is down, it adds positions as a direction.

Logic Again, just like draw(), this function calls the logic function of all
the containers and viruses. In addition the Tissue logic() function is
called.

Containers and viruses have a lot in common, that is why they both
have Entity as their superclass. The classes Container and Virus almost
only have a draw() and logic() function. Let’s first discuss some variables
of their superclass.

Containers and viruses should move time based. This prevents them
from moving faster on faster PCs. In order to accomplish the time based
movement, their old position and the “time they were there” is saved in
a variable (in their superclass Entity). The current position can now be
computed based on the current time, the position, the time where it started,
the position where it moves towards to, and the speed. It is done like this:

• Compute the distance with the first position and the destination po-
sition.

• Compute the total amount of time required to travel that distance,
using the speed of the entity.

• Compute the time currently travelled divided by the total amount of
time required to travel to the destination.

• Use that calculated fraction, to determine the entity’s current position,
which is between the first position and the destination position.

Because a virus or container cannot destruct itself, we store if it is alive
or not; this is done with the boolean variable alive. The playfield then
checks this variable once in a while and deletes the entity if needed.

The last important variable in Entity is the path. This vector contains
positions to where the entity should move. For the container these positions
are determined by the mouse movement (dragging). The virus sets the
positions in the path randomly. Classes outside the entity can add positions
by using the addDirection() and setDirection() functions.

The draw() function in both Container and Virus does nothing more
than just writing the image to the output on the current position. The logic
functions are more interesting:

11



Virus Containment Project Multimedia 2008

Entity’s logic This function changes the positions based on the speed,
time and path.

Container’s logic It calls the entity’s logic(). Besides that it checks
the virus vector in the playfield on nearby viruses. If there indeed is a virus
in the containDistance, it makes the contained variable point to that virus
and it deletes the virus from the playfield. If the container already contains
a virus, it does not check for near viruses. It changes the direction of the
virus in order to get it at the same position as the container. Finally the
container adds some points to the score, kills the virus and kills itself.

Virus’ logic Again the entity’s logic() function is called in order to
change the position. It checks if the virus hits the tissue and if it infects or
bounces. After that the bouncing (on border or tissue) is handled. The way
to do this is by mirroring the path. Finally, a random direction is added to
the path if needed.

There are more classes used. Please check the source code for more
information about them.

4.2.3 Simple DirectMedia Layer (SDL)

The Simple DirectMedia Layer (SDL)1 provides access to input and output
devices, such as the mouse and keyboard or screen and speakers. Using SDL
has two clear advantages, due to it providing a layer of abstraction over a
system.

• It means there is no fiddling with too low-level functionality which
saves some production time.

• It makes it easier to port an application or game when an implemen-
tation of the SDL library exists for the target system as well. If that
is not the case, it might be possible to only replace the SDL functions
with system-specific function calls and successfully recompile that way.

SDL also has a couple of disadvantages though.

• The graphics structure of SDL is not that user friendly, but is thank-
fully not really needed unless one wants to do more with graphics
than just displaying it – such as editing the graphics and checking
color values of pixels.

1The SDL project website: http://www.libsdl.org/.

12



Virus Containment Project Multimedia 2008

• It provides no layers for graphics, meaning programmers either have
to implement these themselves by using separate drawing buffers and
later combining those, or by drawing all the objects in the order of
back to front from the get-go (which might not always be easy and/or
possible). It would be a good improvement if it were to support layered
graphics itself in a clear way.

• Without the aid of extra libraries, only loading in BMP and WAV files
are possible. This is not that bad, actually, if it weren’t for the fact that
SDL does not mix loaded in soundfiles together into a single playable
stream. Effectively this means that one can only play one sound at a
time unless you aren’t afraid to try mixing soundfiles together. Luckily
there are other libraries to complement SDL, such as SDL mixer which
can provide the mixing of audio. However, this not being present in
SDL itself, and is disturbingly lacking.

The installation process of SDL and its libraries is somewhat awkward
and required some fiddling; mostly because we haven’t had much experience
with linking in dynamic libraries. After it being set up though, it was
not that difficult to figure out its interface and use thanks to the nicely
documented SDL API which can be found on its website.

The use of SDL can be seen in main.cpp for setting up the window and
main drawing surface, in graphics.cpp for another abstraction of loading
in BMPs and drawing them using SDL and in timestamp.cpp for requesting
the amount of milliseconds passed since the start-up of the program.

4.2.4 SDL mixer

Since mixing sounds in SDL is not very easy to do yourself (i.e., you have to
combine wave files yourself, but there’s no means to know where to start mix-
ing since you don’t know where the audio buffer currently is with playing),
we chose to use the SDL mixer library, written by Sam Lantinga, Stephane
Peter, and Ryan Gordon.2

SDL mixer provides some handy functions when it comes to mixing au-
dio samples with, for instance, music files. After including the SDL mixer.h
file we can use functions to initialize the audio device (Mix OpenAudio())
and play music and sounds (Mix PlayMusic() and Mix PlayChannel() re-
spectively). Stopping music is done with Mix HaltMusic(), and finally
we can clean up the memory Mix FreeMusic() and close the audio device
(Mix CloseAudio()).

Although this library is very convenient, the documentation is quite brief.
It took us quite some time to install it properly (we had to figure out to
use both the precompiled libraries and the header files, from two different

2The SDL mixer project website: http://www.libsdl.org/projects/SDL mixer/.

13



Virus Containment Project Multimedia 2008

archives from the website). After this worked we could build nice functions
like playMusic() and playSound().

5 Future Improvements

Although the final version of Virus Containment works well and is fun, it is
always possible to improve. These improvements will probably never be real-
ized, because the university project has finished, but it is worth mentioning
some of them.

First of all there are some basic features which we left out of the game.
These include sound settings, pausing the game, and other miscellaneous
settings/adjustments a user could do in the game.

The dragging of containers could be made smoother. It would also help
the game player if the path that the container plans to travel is visible. Also
the random path of the virus could be made smoother.

The levels, viruses and containers (their types), could be balanced better.
This would cost hours of game playing, because there are a lot of possible
configurations. We as developers also discussed about decreasing score when
infection happens. Or changing the balance between some variables (see
section 3).

Although the ‘oldschool’ look and feel of the game is attracting to a
certain (gaming) public, improvements in graphics and sound could make it
a better game. This would make the (educational) topic more realistic and
attract a broader public.

A nice feature that has not been implemented because of the time, is
interaction between viruses and containers. It would be nice if viruses react
on containers. For instance, really ‘smart’ viruses could move away from
their container. Then the player has to force the virus in a corner of the
field. Another improvement could be that containers ‘see’ viruses and move
towards them. This ‘auto-pilot’ function could help in lower levels.

A great enhancement would be porting the game to another platform or
device. This might add some fun; imagine playing Virus Containment on
the Nintendo Wii or DS!

Making Virus Containment three dimensional would be really cool. This
would probably require reprogramming of almost the full game (graphics
class, all the graphics, positions etc.).

6 Evaluation

We all have a different background and therefore different experiences in
programming. Teunis had programmed C once before, but only for a uni-
versity course. Bas already had more experience with C and also a bit with
basic C++. Sander knows C++ also, and uses C a lot in his free time. We

14



Virus Containment Project Multimedia 2008

all had in common that we never programmed advanced C++, and never
created a game in this fashion.

From the start the tasks were divided in a natural way (Table 1). Sander
knew most about C/C++ and had a clear structure in his head. Bas and
Teunis had more basic problems with programming and left the overall struc-
ture over to Sander. We wrote the structure down with the three of us. This
made it a lot easier to divide tasks and split up.

Bas:
Program helper classes
Program fonts
Create graphics and sounds
Program sound
Sander:
Invent game structure
Program graphics
Program menus
Improve ingame physics
Teunis:
Program ingame (virus, and container)
Adjust ini-files
Write documentation

Table 1: The tasks. Obviously we cooperated, but the one responsible is
listed.

Sander did the really nasty part: the first steps in SDL. Bas followed
him and did the programming of sound and music. He also created some
helper classes (i.e. TimeStamp, Sound, Font, and Info), did the graphics and
sounds. Teunis focused on programming a part of ingame (and the classes
it uses). He also adjusted the .ini files, created levels and wrote great
part of the documentation. This project took us approximately 2 months of
parttime work.

6.1 Personal Evaluation

6.1.1 Bas

Having above average programming skills in C and basic skills in C++, I
was quite blank about what to expect. I had never programmed beyond the
console, so using SDL was new to me as well. A great challenge! Also, I
am a fan of old fashioned C, which is in great contrast with object oriented
languages like C++: it’s a complete new way of programming.

I had to get used at using objects again. All the things like public/private
classes, constructors, and inheritance were very new to me in C++. This

15



Virus Containment Project Multimedia 2008

was a great learning experience for me (although we still had to use pointers
and other workarounds, because C++ lacks some things – see below). Other
than that, I’ve learned a great deal of looking at Sander’s way of structured
programming and organizing the entire game.

Finally it was the first time I used third party libraries like SDL. Al-
though Sander already implemented great part of SDL, I had the honors
of doing so with SDL mixer. I spent a well afternoon figuring out what to
download, compile, link, and execute. Finally, after some clever trying, I
succeeded. I’m really proud of what we have achieved in the last two months
and it was fun working on other elements of the game besides coding as well
(graphics and sounds).

6.1.2 Sander

Creating this game proved to be more time consuming than expected. Then
again, pretty much all (programming) projects are. Me having a small bit
of experience with developing games, made the structure of development
not part of the learning process for me. Things I learned the most out of
this project were using SDL, using timestamps to base logic on instead of
expecting logic to be called at the exact same intervals, and the use of the
programming language C++.

I was quite pleased with SDL itself. Not having to use platform-specific
calls for creating a window and drawing to the screen saves a lot of time
and effort better spent elsewhere. C++ started out as a nice and refreshing
programming language for game development, but in the end, due to it being
somewhere in between C and Java when it comes to features, I do not like
it as much as I was hoping for. Programming using objects in C++ is still
a bit awkward, and the lack of a garbage collector makes it harder to use,
especially when using references instead of pointers as that makes it more
difficult to see where variables actually exist.

6.1.3 Teunis

I had some experience programming C, but I forgot everything as time
passed by. I even forgot I used C once. So I had to learn C++ almost from
scratch. I’ve read a few chapters in a C++ book about the structure of
C++ programs, data types, classes, arrays and pointers. Those where the
language specific topics that were new to me. Other things were not that
hard, because I’ve already programmed more advanced Java.

Most difficult to understand was the notion of pointers. Using objects
and arrays was not easy for me and I must admit that in the beginning I
sometimes used the asterisk (*) on a trial-and-error base. Another difficulty
is understanding the nasty compiler messages. The unclear messages made
it hard to detect the cause of an error.

16



Virus Containment Project Multimedia 2008

Overall I found learning C++ was not very hard, because of my knowl-
edge of other programming languages. Though I must say that programming
more advanced things (like with SDL) would still be too difficult for me. I
find C++ more difficult than Java, because in C++ you have to handle more
‘low-level’ things. I think that Java is more suited to learn object oriented
programming, because it is more about the logic (not about the language).
On the other hand, I experience Java as slower. Also, a great advantage of
C++ is that it runs (on Windows) without installing an extra ‘layer’. This
results in my conclusion that C++ is better in practice and Java is better
in theory.

I think in the group work worked out very well. It would take me days
to program the graphics part, but Sander did it a lot faster. This made
it possible for me to program the logic of viruses and containers without
having to deal with the difficulties of SDL. Programming the logic and things
like that where easier for me, because I understand the programming logic.
The thing I had to learn here now was the language C++ and the game
structure. Afterwards, Sander changed some things in order to make the
code a bit better.

Writing a great part of the documentation and cleaning the code was
useful for me. It made me look at the final code and re-evaluate it. Although
I’m not a game player, I liked creating the game. It is an interesting type
of application. It is nice to learn from the structure/logic of a game.

17


