
1

a platform for intelligent multimedia

We have developed a platform for intelligent multimedia, based on distributed
logic programming (DLP) and X3D/VRML. See [Platform]. Now, before giving a
more detailed description of the platform, let’s try to provide a tentative definition
of intelligent multimedia.

intelligent multimedia

... intelligent multimedia provides a merge between technology from AI, in

particular agent-technology, and multimedia ...

However shallow this definition might be, it does indicate that we are in a mul-
tidisciplinary field of research that investigates how we may approach multi-
media in a novel manner, using knowledge technology developed in Artificial
Intelligence. More pragmatically, intelligent multimedia characterizes a program-
matic approach to multimedia making use of high-level declarative languages,
in opposition to low-level third generation and scripting languages, to reduce
the programming effort involved in developing (intelligent) multimedia systems.
Does this make the application themselves more intelligent? Not necessarily.
In effect, nothing can be done that could not have been done using the available
programmatic interfaces. However, we may argue that the availability of a suitable
programming model makes the task (somewhat or significantly) easier.

In our Multimedia Authoring II course, students become familiar with our
intelligent multimedia technology.

Multimedia Authoring II – virtual environments

• intelligent services in virtual environments

Knowledge of Web3D/VRML, as taught in Multimedia Authoring I, is a pre-
requisite. The course gives a brief introduction to logic programming in Prolog
and DLP and then continues with building virtual environments using agent-
technology to control the dynamic aspects of these environments.

1



2 a platform for intelligent multimedia

distributed logic programming

The language DLP has a respectable history. It was developed at the end of the
1980s, [DLP], and was implemented on top of Java at the end of the 1990s. In
retrospect, the language turned out to be an agent-programming language avant
la lettre. What does it offer? In summary:

DLP

• extension of Prolog

• (distributed) objects

• non-logical instance variables

• multiple inheritance

• multi-threaded objects

• communication by rendez-vous

• (synchronization) accept statements

• distributed backtracking

Basically, the language is a distributed object-oriented extension of Prolog. It
supports multiple inheritance, non-logical instance variables and multi-threaded
objects (to allow for distributed backtracking). Object methods are collections of
clauses. Method invocation is dealt with as communication by rendez-vous, for
which synchronization conditions may be specified in so-called accept statements.
As indicated above, the current implementation of DLP is built on top of Java.
See [OO], appendix E for more details.

DLP+X3D platform

Our platform is the result of merging VRML with the distributed logic pro-
gramming language DLP, using the VRML External Authoring Interface. This
approach allows for a clear separation of concerns, modeling 3D content on the
one hand and determining the dynamic behavior on the other hand. As a remark,
recently we have adopted X3D as our 3D format. The VRML profile of X3D is
an XML encoding of VRML97.

To effect an interaction between the 3D content and the behavioral component
written in DLP, we need to deal with two issues:

• control points: get/set – position, rotation, viewpoint

• event-handling – asynchronous accept

We will explain each of these issues separately below. In addition, we will indicate
how multi-user environments may be realized with our technology.

control points The control points are actually nodes in the VRML scenegraph
that act as handles which may be used to manipulate the scenegraph. In effect,
these handles are exactly the nodes that may act as the source or target of event-
routing in the 3D scene. As an example, look at the code fragment below, which
gives a DLP rule to determine whether a soccer player must shoot:



3

findHowToReact(Agent,Ball,Goal,shooting) :-

get(Agent,position,sfvec3f(X,Y,Z)),

get(Ball,position,sfvec3f(Xb,Yb,Zb)),

get(Goal,position,sfvec3f(Xg,Yg,Zg)),

distance(sfvec3f(X,Y,Z),sfvec3f(Xb,Yb,Zb),DistB),

distance(sfvec3f(X,Y,Z),sfvec3f(Xg,Yg,Zg),DistG),

DistB =< kickableDistance,

DistG =< kickableGoalDistance.

This rule will only succeed when the actual distance of the player to the goal and
to the ball satisfies particular conditions, see section ??. In addition to observing
the state of the 3D scene using the get predicate, changes to the scene may be
effected using the set predicate.

event handling Our approach also allows for changes in the scene that are
not a direct result of setting attributes from the logic component. Therefore
we need some way to intercept events. In the example below, we have specified
an observer object that has knowledge of, that is inherits from, an object that
contains particular actions.

:- object observer : [actions].

var slide = anonymous, level = 0, projector = nil.

observer(X) :-

projector := X,

repeat,

accept( id, level, update, touched),

fail.

id(V) :- slide := V.

level(V) :- level := V.

touched(V) :- projector←touched(V).

update(V) :- act(V,slide,level).

:- end object observer.

The constructor sets the non-logical variable projector and enters a repeat loop to
accept any of the incoming events for respectively id, level, update and touched.
Each event has a value, that is available as a parameter when the corresponding
method is called on the acceptance of the event. To receive events, the observer
object must be installed as the listener for these particular events.

The events come from the 3D scene. For example, the touched event results
from mouse clicks on a particular object in the scene. On accepting an event,
the corresponding method or clause is activated, resulting in either changing the
value of a non-logical instance variable, invoking a method, or delegating the call
to another object.

An observer of this kind is used in the system described below, to start a
comment (dialog) on the occurrence of a particular slide.



4 a platform for intelligent multimedia

case studies

To illustrate the potential of our DLP+X3D platform, we will briefly sketch two
additional case studies deploying embodied agents, respectively the use of dialogs
in VR presentations (fig. a), and a scripting language for specifying gestures and
movements for humanoids (fig. b).

(a) dialog in context

dialogs in virtual environments

Desktop VR is an excellent medium for presenting information, for example in
class, in particular when rich media or 3D content is involved. At VU, I have
been using presentational VR for quite some time, and recently I have included
dialogs using balloons (and possibly avatars) to display the text commenting
on a particular presentation. See figure (b) for an example displaying a virtual
environment of the VU, a propaganda movie for attracting students, and two
avatars commenting on the scene. The avatars and their text are programmed as
annotations to a particular scene as described below.

Each presentation is organized as a sequence of slides, and dependent on the
slides (or level within the slide) a dialog may be selected and displayed. See the
observer fragment presented above.

Our annotation for dialog text in slides looks as follows:

<phrase right="how∼are∼you">
<phrase left="fine∼thank∼you"/>
<phrase right="what do∼you think∼of studying ..."/>
...

<phrase left="So,∼what∼are you?"/>
<phrase right="an ∼agent" style="[a(e)=1]"/>
<phrase left="I always∼wanted to be∼an agent" style="[a(e)=1]"/>



5

In figure (b), you see the left avatar (named cutie) step forward and deliver her
phrase. This dialog continues until cutie remarks that she always wanted to be
an agent. The dialog is a somewhat ironic comment on the contents of the movie
displayed, which is meant to introduce the VU to potential students.1

Furthermore, there are a number of style parameters to be dealt with to decide
for example whether the avatars or persona are visible, where to place the dialogs
balloons on the display, as well as the color and transparancy of the balloons. To
this end, we have included a style attribute in the phrase tag, to allow for setting
any of the style parameters.

Apart from phrases, we also allow for gestures, taken from the built-in reper-
toire of the avatars. Below we discuss how to extend the repertoire of gestures,
using a gesture specification language.

Both phrases and gestures are compiled into DLP code and loaded when the
annotated version of the presentation VR is started.

STEP – a scripting language for embodied agents

Given the use of humanoid avatars to comment on the contents of a presentation,
we may wish to enrich the repertoire of gestures and movements to be able, for
example, to include gestural comments or even instructions by gestures.

Recently, we have started working on a scripting language for humanoids
based on dynamic logic. The STEP scripting language consists of basic actions,
composite operators and interaction operators (to deal with the environment in
which the movements and actions take place).

The basic actions of STEP consist of:

• move – move(Agent,BodyPart,Direction,Duration)

• turn – turn(Agent,BodyPart,Direction,Duration)

These basic actions are translated into operations on the control points as specified
by the H-Anim 1.1 standard.

As composite operators we provide sequential and parallel composition, as
well as choice and repeat. These composite operators take both basic actions and
user-defined actions as parameters.

Each action is defined using the script, by specifying an action list containing
the (possibly compound) actions of which that particular action consists. As an
example, look at the definition of walking below.

script(walk(Agent), ActionList) :-

ActionList = [

parallel([turn(Agent,r shoulder,back down2,fast),

turn(Agent,r hip,front down2,fast),

turn(Agent,l shoulder,front down2,fast),

turn(Agent,l hip,back down2,fast)]),

parallel([turn(Agent,l shoulder,back down2,fast),

turn(Agent,l hip,front down2,fast),

1 Clearly, our approach is reminiscent to the notorious Agneta & Frida characters developed
in the Persona project. See the research directions of section ??.



6 a platform for intelligent multimedia

turn(Agent,r shoulder,front down2,fast),

turn(Agent,r hip,back down2,fast)])

], !.

Notice that the Agent that is to perform the movement is given as a parameter.
(Identifiers starting with a capital act as a logical parameter or variable in Prolog
and DLP.)

(b) walking humanoid

Interaction operators are needed to conditionally perform actions or to effect
changes within the environment by executing some command. Our interaction
operators include: test, execution, conditional and until.

Potentially, an action may result in many parallel activities. To control the
number of threads used for an action, we have created a scheduler that assigns
activities to a thread from a thread pool consisting of a fixed number of threads.

As a demonstrator for STEP, we have created an instructional VR for Tai Chi,
the Chinese art of movement.

XML encoding Since we do not wish to force the average user to learn DLP
to be able to define scripts in STEP, we are also developing XSTEP, an XML
encoding for STEP. We use seq and par tags as found in SMIL, as well as gesture
tags with appropriate attributes for speed, direction and body parts involved. As
an example, look at the XSTEP specification of the walk action.

<action type=”walk(Agent)”>
<seq>
<par speed=”fast”>
<gesture type=”turn” actor=”Agent” part=”r shoulder” dir=”back down2”/>
...
</par>
<par speed=”fast”>
...
<gesture type=”turn” actor=”Agent” part=”r hip” dir=”back down2”/>
</par>
</seq>
</action>

Similar as with the specification of dialog phrases, such a specification is translated
into the corresponding DLP code, which is loaded with the scene it belongs
to. For XSTEP we have developed an XSLT stylesheet, using the Saxon pack-
age, that transforms an XSTEP specification into DLP. We plan to incorporate
XML-processing capabilities in DLP, so that such specifications can be loaded
dynamically.



7

related work

There is an enormous amount of research dealing with virtual environments that
are in one way or another inhabited by embodied agents. By way of comparison,
we will discuss a limited number of related research projects.

As systems that have a comparable scope we may mention [Environments]
and DIVE, that both have a client-server architecture for realizing virtual envi-
ronments. Our DLP+X3D platform distinguishes itself from these by providing
a uniform programmatic interface, uniform in the sense of being based on DLP
throughout.

The Parlevink group at the Dutch University of Twente has done active
research in applications of virtual environments with agents. Their focus is,
however, more on language processing, whereas our focus may be characterized
as providing innovative technology.

Both [Jinni] and [Scripts] deal with incorporating logic programming within
VRML-based scenes, the former using the External Authoring Interface, and the
latter inline logic scripts. Whereas our platform is based on distributed objects,
Jinni deploys a distributed blackboard to effect multi-user synchronisation.

Our scripting language may be compared to the scripting facilities offered by
Alice, which are built on top of Python. Also, Signing Avatar has a powerful
scripting language. However, we wish to state that our scripting language is
based on dynamic logic, and has powerful abstraction capabilities and support
for parallelism.

Finally, we seem to share a number of interests with the VHML community,
which is developing a suite of markup languages for expressing humanoid behav-
ior. We see this activity as complementary to ours, since our research proceeds
from technical feasibility, that is how we can capture the semantics of humanoid
gestures and movements within our dynamic logic, which is implemented on top
of DLP.

future research

In summary, we may state that our DLP+X3D platform is a powerful, flexible
and high-level platform for developing VR applications with embodied agents. It
offers a clean separation of modeling and programming concerns. On the negative
side, we should mention that this separation may also make development more
complex and, of course, that there is a (small) performance penalty due to the
overhead incurred by using the External Authoring Interface.

Where our system is currently lacking, clearly, is adequate computational
models underlying humanoid behavior, including gestures, speech and emotive
characteristics. The VHML effort seems to have a rich offering that we need to
digest in order to improve our system in this respect.



8 a platform for intelligent multimedia

Our choice to adopt open standards, such as XML-based X3D, seems to be
benificial, in that it allows us to profit from the work that is being done in other
communities, so that we can enrich our platform with the functionality needed to
create convincing embodied agents in a meaningful context.


	a platform for intelligent multimedia

