0.1 Types as behavior

In the previous chapter we have developed a formal definition of types and the
subtyping relation. However, we have restricted ourselves to (syntactic) signa-
tures only, omitting (semantic) behavioral properties associated with function
and object types.

Subtype requirements — signature and behavior 0-1

e preservation of behavioral properties

Safety properties — nothing bad
e invariant properties — true of all states

e history properties — true of all execution sequences

Slide 0-1: Subtyping and behavior

From a behavioral perspective, the subtype requirements (implied by the
substitutability property) may be stated abstractly as the preservation of behav-
ioral properties. According to [Liskov93], behavioral properties encompass safety
properties (which express that nothing bad will happen) and liveness properties
(which express that eventually something good will happen). For safety properties
we may further make a distinction between invariant properties (which must be
satisfied in all possible states) and history properties (which hold for all possible
execution sequences). See slide P-1].

Behavioral properties (which are generally not captured by the signature only)
may be important for the correct execution of a program. For example, when we
replace a stack by a queue (which both have the same signature if we rename
push and insert into put, and pop and retrieve into get) then we will get incorrect
results when our program depends upon the LIFO (last-in first-out) behavior of
the stack.

As another example, consider the relation between a type FatSet (which sup-
ports the methods insert, select and size) and a type IntSet (which supports the
methods insert, delete, select and size). See slide D-2.

With respect to its signature, IntSet merely extends FatSet with a delete
method and hence could be regarded as a subtype of FatSet. However, consider
the history property stated above, which says that for any (FatSet) s, when an
integer z is an element of s in state ¢ then z will also be an element of s in any
state ¥ that comes after ¢. This property holds since instances of FatSet do not
have a method delete by which elements can be removed. Now if we take this
property into account, IntSet may not be regarded as a subtype of FatSet, since
instances of IntSet may grow and shrink and hence do not respect the FatSet
history property.

This observation raises two questions. Firstly, how can we characterize the
behavior of an object or function and, more importantly, how can we extend our



	Types as behavior

