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0.1 Verifying behavioral properties

The concern with program correctness stems from a period when projects were
haunted by what was called the software crisis. Projects delivered software that
contained numerous bugs and large programs seemed to become unmanageable,
that is never error-free. One of the most radical ideas proposed to counteract the
software crisis was to require that programs should formally be proven correct
before acceptance. The charm of the idea, I find personally, is that programming
in a way becomes imbued with the flavor of mathematics, which may in itself be
one of the reasons that the method never became very popular.

0.1.1 State transformers

Proving the correctness of (imperative) programs is based on the notion of states
and the interpretation of programs as state transformers. A state, in a mathe-
matical sense, is simply a function that records a value for each variable in the
program. For example, having a program S in which the (integer) variable i
occurs, and a state φ, we may have φ(i) = 3. States may be modified by actions
that result from executing the program, such as by an assignment of a value to
a variable. We employ substitutions to modify a state. As before, substitutions
may be defined by an equation, as given in slide ??.

Substitutions

φ[x := v ](y)=

{
v if x = y
φ(y) otherwise
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Slide 0-1: Substitution

A substitution φ[x := v ](y) states that modifying φ by assigning the value v
to the variable x then, for a variable y, the state φ will deliver v whenever y is
identical to x and φ(y) otherwise. When we have, for example, an assignment
i = 5 then we have as the corresponding transition

φ− i = 5→φ′
where φ′ = φ[i := 5], that is φ′ is like φ except for the variable i for which the

value 5 will now be delivered.
Whenever we have a sequence of actions a1, . . . , an then, starting from a state

φ0 we have corresponding state transformations resulting in states φ1, . . . , φn−1

as intermediary states and φn as the final state. Often the states φ0 and φn are
referred to as respectively the input and output state and the program that results
in the actions a1, . . . , an as the state transformer modifying φ0 into φn .

To characterize the actions that result from executing a program, we need an
operational semantics that relates the programming constructs to the dynamic
behavior of a program. We will study such a semantics in section ??.
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Program state – φ

• φ ∈ Σ : Var→Value

State transformations – operations a1, a2, . . . , an

• φ0 − a1→φ1 . . .− an→φn

Correctness formulae – Hoare logic

• {P}S{Q}

Verification

• φi
a−→ φj ∧ φi |= P ⇒ φj |= Q
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Slide 0-2: The verification of state transformations

The requirements a program (fragment) has to meet may be expressed by
using predicates characterizing certain properties of a program state. Then, all
we need to do is check whether the final state of a computation satisfies these
requirements.

Predicates characterizing the properties of a state before and after executing
a program (fragment) may be conveniently stated by correctness formulae of the
form
{P}S{Q}
where S denotes a program (fragment) and P and Q respectively the pre-

condition and post-condition associated with S.
A formula of the form {P}S{Q} is true if, for every initial state φ that

satisfies P and for which the computation characterized by S terminates, the
final state φ′ satisfies Q. This interpretation of {P}S{Q} characterizes partial
correctness, partial since the truth of the formula is dependent on the termination
of S (which may, for example, for a while statement, not always be guaranteed).
When termination can be guaranteed, then we may use the stronger notion of
total correctness, which makes the truth of {P}S{Q} no longer dependent on the
termination of S.

Pre- and post-conditions may also be used to check invariance properties. As
an example, consider the following correctness formula:
{s = i ∗ (i + 1)/2}i = i + 1; s = s + i ; {s = i ∗ (i + 1)/2}
It states that the begin and end state of the computation characterized by

i = i + 1; s = s + i is invariant with respect to the condition s = i ∗ (i + 1)/2.
As an exercise, try to establish the correctness of this formula!

To verify whether for a particular program fragment S and (initial) state φi

satisfying P the correctness formula {P}S{Q} holds, we need to compute the
(final) state φj and check that Q is true for φj . In general, for example in the case
of non-deterministic programs, there may be multiple (final) states resulting from
the execution of S. For each of these states we have to establish that it satisfies
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(the post-condition) Q. We call the collection of possible computation sequences
of a program fragment S the traces of S. Traces characterize the (operational)
behavior of a program.

0.1.2 Assertion logic

Reasoning about program states based on the traces of a program may be quite
cumbersome. Moreover, a disadvantage is that it relies to a great extent on our
operational intuition of the effect of a program on a state. Instead, [Hoare69] has
proposed using an axiomatic characterization of the correctness properties of pro-
gramming constructs. An axiomatic definition allows us to prove the correctness
of a program with respect to the conditions stating its requirements by applying
the appropriate inference rules.

Axioms

• assignment – {Q [x := e]}x = e{Q}
• composition – {P}S1{R} ∧ {R}S2{Q} ⇒ {P}S1; S2{Q}
• conditional – {P ∧ b}S{Q} ⇒ {P}if (b)S{Q}
• iteration – {I ∧ b}S{I} ⇒ {I}while(b)S{I ∧ ¬b}

Consequence rules

• P→R ∧ {R}S{Q} ⇒ {P}S{Q}
• R→Q ∧ {P}S{R} ⇒ {P}S{Q}

Procedural abstraction

• m(x) 7→ S(x) ∧ {P}S(e){Q} ⇒ {P}m(e){Q}
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Slide 0-3: The correctness calculus

In slide ?? correctness axioms have been given for assignment, sequential
composition, conditional statements and iteration. These axioms rely on the side-
effect free nature of expressions in the programming language. Also, they assume
convertibility between programming language expressions and the expressions
used in the assertion language.

The assignment axiom states that for any post-condition Q we can derive the
(weakest) pre-condition by substituting the value e assigned to the variable x for
x in Q. This axiom is related to the weakest pre-condition calculus introduced
by [Dijkstra76]. It is perhaps the most basic axiom in the correctness calculus
for imperative programs. As an example, consider the assignment x = 3 and the
requirement {P} x = 3 {y = x}. Applying the assignment axiom we have {y =
3} x = 3 {y = x}. Consequently, when we are able to prove that P implies y = 3,
we have, by virtue of the first consequence rule, proved that {P} x = 3 {x = y}.

The next rule, for sequential composition, allows us to break a program (frag-
ment) into parts. For convenience, the correctness formulae for multiple program
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fragments that are composed in sequential order are often organized as a so-called
proof outline of the form {P} S1 {R} S2 {Q}. When sufficiently detailed, proof
outlines may be regarded as a proof. For example, the proof outline
{s = i ∗ (i +1)/2} i = i +1; {s + i = i ∗ (i +1)/2}s = s + i ; {s = i ∗ (i +1)/2}
constitutes a proof for the invariance property discussed earlier. Clearly, the

correctness formula for the two individual components can be proved by applying
the assignment axiom. Using the sequential composition rule, these components
can now be easily glued together.

As a third rule, we have a rule for conditional statements of the form if(b) S .
As an example, consider the correctness formula
{true} if (x>y) z = x ; {z>y}.
All we need to prove, by virtue of the inference rule for conditional statements,

is that {x>y}z = x {z>y} which (again) immediately follows from the assignment
axiom.

As the last rule for proving correctness, we present here the inference rule for
iterative (while) statements. The rule states that whenever we can prove that a
certain invariant I is maintained when executing the body of the while statement
(provided that the condition b is satisfied) then, when terminating the loop, we
know that both I and ¬b hold. As an example, the formula
{true} while (i>0) i--; {i60}
trivially follows from the while rule by taking I to be true.
Actually, the while rule plays a crucial role in constructing verifiable algorithms

in a structured way. The central idea, advocated among others by [Gries], is to
develop the algorithm around a well-chosen invariant. Several heuristics may be
applied to find the proper invariant starting from the requirements expressed in
the (output) predicate stating the post-condition.

In addition to the assignment axiom and the basic inference rules related to
the major constructs of imperative programming languages, we may use so-called
structural rules to facilitate the actual proof of a correctness formula. The first
structural (consequence) rule states that we may replace a particular pre-condition
for which we can prove a correctness formula (pertaining to a program fragment
S) by any pre-condition of which the original pre-condition is a consequence, in
other words which is stronger than the original pre-condition. Similarly, we may
replace a post-condition for which we know a correctness formula to hold by any
post-condition that is weaker than the original post-condition. As an example,
suppose that we have proved the formula
{x > 0} S {x<0}
then we may, by simultaneously applying the two consequence rules, derive

the formula
{x>0} S {x60}
which amounts to strengthening the pre-condition and weakening the post-

condition. The intuition justifying this derivation is that we can safely promise
less and require more, as it were.

Finally, the rule most important to us in the present context is the inference
rule characterizing correctness under procedural abstraction. Assuming that we
have a function m with formal parameter x (for convenience we assume we have
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only one parameter, but this can easily be generalized to multiple parameters), of
which the (function) body consists of S (x ). Now, moreover, assume that we can
prove for an arbitrary expression e the correctness formula {P} S (e) {Q}, with
e substituted for the formal parameter x in both the conditions and the function
body, then we also have that {P}m(e){Q}, provided that P and Q do not contain
references to local variables of the function m.

In other words, we may abstract from a complex program fragment by defining
a function or procedure and use the original (local) correctness proof by properly
substituting actual parameters for formal parameters. The procedural abstraction
rule, which allows us to employ functions to perform correct operations, may
be regarded as the basic construct needed to verify that an object embodies a
(client/server) contract.


