
1

Behavioral refinement

Ultimately, types are meant to specify behavior in an abstract way. To capture
behavioral properties, we will generalize our notion of types as constraints to
include behavioral descriptions in the form of logical assertions.

Behavioral refinement 10

• types as behavior

• verification

• abstraction and representation

• behavioral compositions

Additional keywords and phrases: behavioral subtypes, state transform-
ers, correctness formulae, assertion logic, transition systems, invariants,
formal specification

1-1

Slide 1-1: Behavioral refinement

In this chapter we will explore the notion of behavioral (sub)types. First we
characterize the trade-offs between statically imposed (typing) constraints and
dynamic constraints resulting from the specification of behavioral properties. We
will provide a brief introduction to the assertion logic underlying the verification
of behavioral constraints. Also, we look at how we may characterize the behavior
of object-based systems in a mathematical way. Then we will describe the duality
between abstraction and representation in defining behavioral subtypes that define

1



2 Behavioral refinement

concrete realizations of abstract specifications. In particular, we specify the
correspondence requirements for behavioral subtypes. We will conclude this
chapter by discussing the problems involved in specifying behavioral compositions,
and explore what specification techniques are available to model the behavior of
object-based systems.

1.1 Types as behavior

In the previous chapter we have developed a formal definition of types and the
subtyping relation. However, we have restricted ourselves to (syntactic) signa-
tures only, omitting (semantic) behavioral properties associated with function
and object types.

Subtype requirements – signature and behavior

• preservation of behavioral properties

Safety properties – nothing bad

• invariant properties – true of all states

• history properties – true of all execution sequences

1-2

Slide 1-2: Subtyping and behavior

From a behavioral perspective, the subtype requirements (implied by the
substitutability property) may be stated abstractly as the preservation of behav-
ioral properties. According to [Liskov93], behavioral properties encompass safety
properties (which express that nothing bad will happen) and liveness properties
(which express that eventually something good will happen). For safety properties
we may further make a distinction between invariant properties (which must be
satisfied in all possible states) and history properties (which hold for all possible
execution sequences). See slide 1-2.

Behavioral properties (which are generally not captured by the signature only)
may be important for the correct execution of a program. For example, when we
replace a stack by a queue (which both have the same signature if we rename
push and insert into put, and pop and retrieve into get) then we will get incorrect
results when our program depends upon the LIFO (last-in first-out) behavior of
the stack.

As another example, consider the relation between a type FatSet (which sup-
ports the methods insert, select and size) and a type IntSet (which supports the
methods insert, delete, select and size). See slide 1-3.

With respect to its signature, IntSet merely extends FatSet with a delete
method and hence could be regarded as a subtype of FatSet. However, consider
the history property stated above, which says that for any (FatSet) s, when an
integer x is an element of s in state φ then x will also be an element of s in any


	Behavioral refinement
	Types as behavior
	Verifying behavioral properties
	State transformers
	Assertion logic

	On the notion of behavior
	Objects as behavioral types
	Abstraction and representation
	The correspondence relation

	Specifying behavioral compositions


