
1

0.1 Type abstraction

In this section we will study type calculi that allow us to express the various
forms of polymorphism, including inclusion polymorphism (due to inheritance),
parametric polymorphism (due to generics) and intersection types (due to over-
loading), in a syntactic way, by means of appropriate type expressions.

The type calculi are based on the typed lambda calculus originally introduced
in [Ca84] to study the semantics of multiple inheritance. We will first study some
simple extensions to the typed lambda calculus and then discuss examples involv-
ing universal quantification (defining parametric types), existential quantification
(hiding implementation details) and bounded quantification (modeling subtypes
derived by inheritance). For those not familiar with the lambda calculus, a very
elementary introduction is given below. For each calculus, examples will be given
to relate the insights developed to properties of the C++ type system.

The lambda calculus The lambda calculus provides a very concise, yet powerful
formalism to reason about computational abstraction. The introduction given
here has been taken from [Barend], which is a standard reference on this subject.

Lambda calculus – very informal λ

• variables, abstractor λ, punctuation (, )

Lambda terms – Λ

• x ∈ Λ variables

• M ∈ Λ⇒ λ x .M ∈ Λ abstraction

• M ∈ Λ and N ∈ Λ⇒ MN ∈ Λ application

0-1

Slide 0-1: The lambda calculus – terms

Syntactically, lambda terms are built from a very simple syntax, figuring
variables, the abstractor λ (that is used to bind variables in an expression), and
punctuation symbols. Abstractors may be used to abstract a lambda term M
into a function λ x .M with parameter x. The expression λ x .M must be read as
denoting the function with body M and formal parameter x. The variable x is
called the bound variable, since it is bound by the abstractor λ. In addition to
function abstraction, we also have (function) application, which is written as the
juxtaposition of two lambda terms. See slide 0-1.

Behaviorally, lambda terms have a number of properties, as expressed in the
laws given in slide 0-2.

The most important rule is the beta conversion rule, which describes in a
manner of speaking how parameter passing is handled. In other words function
call, that is the application (λ x .M )N , results in the function body M in which N
is substituted for x. Two other laws are the so-called extensionality axioms, which
express how equality of lambda terms is propagated into application and function



2

Laws

• (λ x .M )N = M [x := N ] conversion

• M = N ⇒ MZ = NZ and ZM = ZN

• M = N ⇒ λ x .M = λ x .N

0-2

Slide 0-2: The lambda calculus – laws

abstraction. These laws impose constraints upon the models characterizing the
meaning of lambda terms.

Substitution

• x [x := N ]≡N

• y[x := N ]≡y if x 6=y

• (λ y.M )[x := N ]≡λ y.(M [x := N ])

• (M1M2)[x := N ] ≡ (M1[x := N ])(M2[x := N ])

0-3

Slide 0-3: The lambda calculus – substitution

Substitution is defined by induction on the structure of lambda terms. A
variable y is replaced by N (for a substitution [x := N ]) if y is x and remains y
otherwise. A substitution [x := N ] performed on an abstraction λ y .M results in
substituting N for x in M if x is not y. If x is identical to y, then y must first be
replaced by a fresh variable (not occurring in M). A substitution performed on
an application simply results in applying the substitution to both components of
the application. See slide 0-3.

Some examples of beta conversion are given in slide 0-4. In the examples,
for simplicity we employ ordinary arithmetical values and operators. This does
not perturb the underlying λ-theory, since both values and operations may be
expressed as proper λ-terms.

Examples

(λx .x )1 = x [x := 1] = 1
(λx .x + 1)2 = (x + 1)[x := 2] = 2 + 1
(λx .x + y + 1)3 = (x + y + 1)[x := 3] = 3 + y + 1
(λy .(λx .x + y + 1)3)4) =

((λx .x + y + 1)3)[y := 4] = 3 + 4 + 1

0-4

Slide 0-4: Beta conversion – examples


	Type abstraction
	A simple type calculus
	Intersection types
	Bounded polymorphism


