Studying The Wiimote

Exploration To Enhance The Feeling Of Interactivity In Applications

vrije Universiteit amsterdam ﬁ)

Danny Zulkarnain
Steve Stomp

September 2007

Index
Studying The Wiimote

Exploration To Enhance The Feeling Of Interactivity In Applications

1.
2.

3.

4.
5.

T a oo [V 4] o HA PP PO PO POPPPPPRPTRP 3

g LU TV oSS SEPEUE 4
2.1 WWHIMIOTE ot e s e e s e e s s et e e s s ne e e e s nreee s smneeessanenes see 4
2.2 COMMUINICATION «.etiiiiiiiee ettt e et e e s eab et e e snr et e s sabeeeesenreeeesanneeessaraneesanee 5
2.3 MOTION SENSON weiiiiiiiiiiiiiiii i e aa e s s sba e e s s aba e e s snae s 5
GIOVEPIE. .ttt et h ettt et e b e e bt b e b e e nbe e eereenneen 6
3.1 F AN oY o] [ToF: | o] o VU 6
3.2 KT ol o)1 [o V=R RTURRN 6
3.3 R Yol o) £ 8
3.3.1 POWEIPOINT ettt ettt ettt e e e e e e e sttt et e e e e e e s e s s asab et teeeeeeeesaanansrtaaeeaeeeeeaas 8
3.3.2 IMIAi VI TOON ettt ettt et et st et seb e st b b sttt s e ebnas 8
3.3.3 HAIf LIfE 2 ettt sttt st ettt s et e s et s st b et s et 9

34 PrO @nd CONS....ciiiiieitie ettt ettt ettt ettt e st e st e st e s bt e e s abee s bt e e bbeesnre e s beeenaeesareaas 14
(6o o Tol [V To o PRSP PSPPSR 15

23] o [ToY={ =T o] o1V 2T 16

1. Introduction

Despite the many revolutionary advancements in technology, the basic interface between the human and the
computer system has received relatively little attention in terms of evolution. Recently Nintendo released a
new video game console the Wii. This new console is controlled by a wireless Bluetooth controller, the
Wiimote. Through its pointing and motion-sensing abilities Nintendo hoped to make a console accessible to
people of all ages and abilities. Nintendo did not expected that users would re-engineer the device to do all
sorts of things having nothing to do with playing videogames. Our aim is to study the Wiimote’s features and
possibilities to enhance the feeling of interactivity in either audiual and visual applications on the personal
computer (Windows) platform.

This paper consist of four chapters, of which the introduction is the first. In the second chapter we will
begin with giving a technical overview of the Wiimote along with how communication is set up. The third
chapter discusses the project space, so which software and hardware are used. The paper is concluded with a
chapter in which we give proposals for potential follow-up studies.

In able to set up a Wiimote with a computer the following things are needed:

e Wiimote (and Nunchuk)

e Bluetooth device

e Windows operating system
e LED sensor bar

e GlovePie (optional)

e MidiYoke (optional)

2. Input Device

2.1 Wiimote

The Wiimote is an one-handed wireless input device/controller and consist of the twelve buttons, four of which
are arranged into a directional pad and the rest is spread over the device. It's symmetric design allows it to be
used with either the left or right hand. Figure 2.1 gives overview of the layout. The expansion port on the
bottom of the unit is used to connect the remote to auxiliary controllers which augment the input options of

L -‘ IR sensor
J

e ——
Power button Directional Pad

L
s

——"“A" button

T —Home button
~

VI" GRS I—Minus/l’lusbuttons

Speaker

T
C, One/Two buttons

‘_J | I.,-_uns ’—?—‘

3 F m 97_' Expansion port
=

Figure 2.1, Wiimote
the Wiimote. Auxiliary controllers use the interface of the Wiimote to communicate with the host. One of the
auxiliary controllers is the Nunchuk (see figure 2.2). It features an analog stick enabling more control options.
The controller uses two AA batteries as a power source, which can power it for 30 hours if used with a auxiliary
controller or 60 hours if used alone.

“B" button

Figure 2.2, Nunchuk

As figure 2.1 shows the Wiimote contains four blue LEDs, these LEDs are used during normal use to indicate
that the remote is in Bluetooth discoverable mode (all blinking), or to indicate the users number of the
controller (only one illuminated). Furthermore the controller is provided with a rumble, via a motor with an
unbalanced weight attached to it inside the Wiimote, which can be activated to cause the controller to vibrate.
And it has a low-quality speaker used for short sound effects during use.

2.2 Communication

Communication with the host is accomplished through a Bluetooth wireless link. The Bluetooth controller is a
Broadcom 2042 chip, which is designed to be used with devices which follow the Bluetooth Human Interface
Device (HID) standard, such as keyboards and mice. Not all Bluetooth devices are compatible with the Wiimote.
The following website gives a list for all working and non-working Bluetooth devices,
http://wiibrew.org/index.php?title=List of Working Bluetooth Devices.

2.3 Motion Sensor
Internally the Wiimote has a integrated circuit called the ADXL330 accelerometer. This device has the ability to
measure acceleration along three axis (see figure 2.3). The device is supported by springs built out of silicon,

and through the force exerted on these springs the
_Y sensor measures the acceleration of the Wiimote. Due

to the sign convention used, this quantity is
proportional to the net force exerted by the user’s

i hand on the Wiimote when holding it.
Z i Besides motion-sensing abilities, with the
+ —x accelerometer, the Wiimote is also augmented with an
Af—— PR S — infrared image sensor on the front. This feature is
+>{ =t designed to locate IR beacons within the user’s field of

view, and thus creating position-sensing abilities. These
beacons are transmitted through the sensor bar. By
tracking the locations of the beacons in contrast to the
Wiimote sensor, the system can derive more accurate
TN pointing information. The Nintendo sensor bar
; contains 10 LEDs, five on each side. The LEDs closest to

- - - I the center are pointing inward and the farthest are
pointing outward. The LEDs enable the Wiimote to
= T calculate the distance from the bar and even the angle

o ——

Z of the device with respect to the ground (tilting and
rotating). Out of these position values other data (size
and pixel value) can be requested. It is not necessary to
use a sensor bar containing as many lights as the

Figure 2.3, motion sensing version of Nintendo. A bar containing two LEDs will be

enough to enable the position-sensing abilities.

http://wiibrew.org/index.php?title=List_of_Working_Bluetooth%20_Devices

3. GlovePie

3.1 Application

GlovePie (Glove Programmable input emulator) is an application specifically designed to emulate joystick and
keyboard input through running custom scripts. The application was initially designed for virtual reality gloves
as a system for emulating joystick and keyboard input. However it has evolved to support all kinds of devices
including the Nintendo Wiimote. By using GlovePie it is possible to handle and program the input from the
Wiimote, to use this device to control programs that are used with a keyboard, mouse or joystick. GlovePie is
only compatible with Windows operating systems, though there are other programs for utilizing the Wiimote in
other operating systems (http://www.wiili.org)

3.2 Scripting
GlovePie uses an interface that resembles a text editor. In able to use GlovePie as an interpreter to interpret
Wiimote signals, it is necessary to program scripts that correspond to specific keys or buttons. The syntax used

in this program is similar to Java and BASIC. For example to assign the Wiimote’s button A to keyboard button
‘A

e Key.A=Wiimote.A
With GlovePie it is possible to use multiple Wiimotes, which can be distinguished by using consecutive numbers
with a maximum of 8. For instance to call button ‘A’ from different Wiimotes and assign them to different

keyboard entries.

o Key.X=Wiimotel.A
e Key.Y = Wiimote2.A

The available inputs of the Wiimote can be categorized into buttons, D-pad (directional-pad), acceleration,
rotation, sensor bar, LEDs and rumble.

Buttons:
e Wiimote.A
e Wiimote.B

e Wiimote.Plus
e Wiimote.Home
e Wiimote.One
e Wiimote.One
e Wiimote.Two

e Wiimote.Up

e Wiimote.Down
e Wiimote.Left

e Wiimote.Right

Acceleration:
e Wiimote.RelAccX / Wiimot.RawAccX
e Wiimote.RelAccY / Wiimote.RawAccY

http://www.wiili.org/

e Wiimote.RelAccZ / Wiimote.RawAccZ

Rotation
e Wiimote.Roll
e Wiimote.Pitch

Sensor Bar (#=1,2,3,4)
e Wiimote.Dot#x
e Wiimote.Dot#y
e Wiimote.Dot#size
e Wiimote.Dot#vis

e Wiimote.Ledl
e Wiimote.Led2
e Wiimote.Led3
e Wiimote.Led4

Rumble
e Wiimote.Rumble

Speaker
e Wiimote.Frequency
e Wiimote.Volume
e Wiimote.Speaker
e Wiimote.Mute
e Wiimote.SampleRate

The Wiimote controls can be extended using the Nintendo Nunchuck (see chapter 2) to have extra controls.

Buttons:
e Wiimote.Nunchuk.Cbutton
e Wiimote.Nunchuk.Zbutton

Joystick:
e Wiimote.Nunchuk.JoyX
e Wiimote.Nunchuk.JoyY

Acceleration
e Wiimote.Nunchuk.RawForceX
e Wiimote.Nunchuk.RawForceY
e Wiimote.Nunchuk.RawForceZ
e Wiimote.Nunchuk.gx
e Wiimote.Nunchuk.gy
e Wiimote.Nunchuk.gz

Basic directional-pad script mapped to keyboard
// If the Wiimote is tilted over an angle lower than -20 degrees then keyboard button up is pressed
e Key.Up = (Wiimotel.Pitch <=-20 degrees)

// If the Wiimote is tilted over an angle higher than 20 degrees then keyboard button down is pressed
e Key.Down = (Wiimotel.Pitch >= 20 degrees)

// If the Wiimote is rotated over an angle lower than -45 degrees then keyboard button right is pressed
e Key.Left = (Wiimotel.Roll <= -45 degrees)

// If the Wiimote is rotated over an angle higher than 45 degrees then keyboard button right is pressed
e sKey.Right = (Wiimotel.Roll >= 45 degrees)

3.3 Scripts

3.3.1 Powerpoint
These are some basic PowerPoint scripts to control a PowerPoint presentation using a Wiimote.

//powerpoint-control: next slide
e Key.PageUp = (Wiimotel.Roll <= -45 degrees)
e Key.PageUp = Wiimotel.RelAccX <= -20 m per s //alternate

//powerpoint-control: previous slide
e Key.PageDown = (Wiimotel.Roll >= 45 degrees)
e Key.PageDown = Wiimotel.RelAccX >= 20 m per s //alternate

//powerpoint-control: 1th slide
e Key.One = Wiimotel.Minus
e Key.Enter = Wiimotel.Minus

//powerpoint-control: display/hide white screen
o Key.W =Wiimotel.A
e Key.Escape = Wiimotel.Home

3.3.2 Midi V]-tool
In this script example the Wiimote signals are mapped to midi entry keys. With an midi emulator like MidiYoke
(http://www.midiox.com/) it is possible to map the Wiimote-controls to midi signals.

midi2.CO = Wiimote.Up

e midi2.D0 = Wiimote.Left
e midi2.E0 = Wiimote.Right
e midi2.FO = Wiimote.Down

e midi2.GO = Wiimote.A
e midi2.A0 = Wiimote.B

e midi2.BO = Wiimote.Minus

http://www.midiox.com/

e midi2.C1 = Wiimote.Home
e midi2.D1 = Wiimote.Plus

e midi2.E1 = Wiimote.One
e midi2.F1 = Wiimote.Two

In this example a midi input is mapped to a combined operation of accelerating the Wiimote in the x-axis while
pressing the A key.

e midi.g2 = (Wiimotel.RelAccX <=-20 m per s) and (Wiimotel.A)
e midi.gsharp2 = (Wiimotel.RelAccX >= 20 m pers) and (Wiimotel.A)

3.3.3 Halflife21
This script uses the Wiimote, Nunchuck and a infrared source. In this script the Nunchuk is used to navigate
through the scene and the Wiimote is used to control the weapons.

var.dummy = Wiimote.rawforcex

// Get Nunchuk axis locations. Range is -0.99 to 0.99

// Multiply by 100 to get whole numbers. (-99 to 99)
var.xNunchuk = Wiimote.Nunchuk.JoyX * 100

var.yNunchuk = Wiimote.Nunchuk.JoyY * 100

// X/Y offsets for Analog. If it's too sensative then make the numbers larger.
var.xOff =7

var.yoff =7

// Acceleration ammount for Nunchuk Reload (default = 17.0)
var.nunchukAccX = 19.0

// Blink rate for battery check.

var.Blink = 500ms

// Mouse IR Offsets - Use these for calibrating.

var.xOffset =0

var.yOffset =0

var.irAmount = 2

// Master Sensitivity (Default 80) - Change Not Recommended
var.smooth = 80

// Look Speed (Default 1)

var.speed =1

// Speed When Aiming Down Sight (Default 1/2)

var.zoom = 1/2

// Less Sensitive Area Around Cursor (Default 40)
var.deadzone =40

/1

// Analog Movements

/1

if var.xNunchuk > var.xOff and var.yNunchuk > var.yOff then

' This script is for Halflife2 created by Marco Ceppi.

key.w = false
key.a = false
key.s = true
key.d = true
//debug ='SE'
else if var.xNunchuk > var.xOff and var.yNunchuk < -var.yOff then
key.w = true
key.a = false
key.s = false
key.d = true
//debug = 'NE'
else if var.xNunchuk < -var.xOff and var.yNunchuk < -var.yOff then
key.w = true
key.a = true
key.s = false
key.d = false
//debug = 'NW'
else if var.xNunchuk < -var.xOff and var.yNunchuk > var.yOff then
key.w = false
key.a = true
key.s = true
key.d = false
//debug ="'SW'
else if var.xNunchuk > var.xOff then
key.w = false

key.a = false
key.s = false
key.d = true

//debug = 'Right'
else if var.xNunchuk < -var.xOff then
key.w = false

key.a = true
key.s = false
key.d = false

//debug = "Left'
else if var.yNunchuk < -var.yOff then
key.w = true
key.a = false
key.s = false
key.d = false
//debug ="Up'
else if var.yNunchuk > var.yOff then
key.w = false

key.a = false
key.s = true
key.d = false

//debug = 'Down’
else if var.xNunchuk > -var.xOff and < var.xOff and var.yNunchuk < var.yOff and > -var.yOff then
key.w = false

10

key.a = false
key.s = false
key.d = false
//debug =
else
key.w = false
key.a = false
key.s = false
key.d = false
//debug
endif

//

// Game buttons.

//

// Wiimote

key.Shift = Wiimote.Up
mouse.WheelUp = Wiimote.Left
mouse.WheelDown = Wiimote.Right
key.e = Wiimote.Down

mouse.LeftButton = Wiimote.B
Wiimote.Rumble = Wiimote.B
mouse.RightButton = Wiimote.A

key.q = Wiimote.Minus
key.escape = Wiimote.Home
key.f = Wiimote.Plus

key.One = Wiimote.One
// Wiimote.Two handles Battery.

/]

// Nunchuk

/]

key.space = Wiimote.Nunchuk.ZButton
key.Ctrl = Wiimote.Nunchuk.CButton

/1

// Reload

/1

if Wiimote.Nunchuk.RawAccX > var.nunchukAccX or < -var.nunchukAccX then
key.r = true

key.r = false

//debug = 'VROOM!'

endif

Wiimote.leds =0

11

//

// Battery Check!

//

// A full battery gives 0xCO (192)

if Wiimote.Two == true then
var.Batt = Wiimote.Battery / 48

if true then
wait 5 seconds
// it sends an instruction that tells the Wiimote to actually
// send the report.
Wiimote.Report15 = 0x80 | Int(Wiimote.Rumble)
endif

// Display the battery level of your Wiimote using the four LEDs on the bottom.
// Battery level is displayed in four levels increasing to the right, like a cell

// phone battery gauge. As the battery gets close to the next level down, the LED
// for the current level will blink.

debug = "Battery level: " + 100*48*var.Batt/192 + "%"

if 0 <= var.Batt <= 0.25 then
Wiimote.Leds = 1
wait var.Blink
Wiimote.Leds =0
wait var.Blink

elseif 0.25 < var.Batt<=1 then
Wiimote.Leds =1

elseif 1 < var.Batt<=1.25 then
Wiimote.Leds =3
wait var.Blink
Wiimote.Leds = 1
wait var.Blink

elseif 1.25 < var.Batt<=2 then
Wiimote.Leds = 3

elseif 2 < var.Batt<=2.25 then
Wiimote.Leds = 7
wait var.Blink
Wiimote.Leds = 3
wait var.Blink

elseif 2.25 < var.Batt<=3 then
Wiimote.Leds = 7

elseif 3 < var.Batt<=3.25 then
Wiimote.Leds = 15
wait var.Blink
Wiimote.Leds =7
wait var.Blink

elseif 3.25 < var.Batt<=4 then
Wiimote.Leds = 15

else

12

Wiimote.Leds =0
endif
endif

//
// IR Mouse
//
If var.irAmount = 2 Then
var.xPos = (Wiimote.dot1x + Wiimote.dot2x) / 2
var.yPos = (Wiimote.dotly + Wiimote.dot2y) / 2
Else
var.xPos = Wiimote.dot1x
var.yPos = Wiimote.dot1ly
EndIf

If Wiimote.dotlvis Then
// Locate Inrared Point Coordinates

var.actualX = (1-(round(var.xPos) / 1024)) * Screen.Width
var.actualY = ((round(var.yPos) / 768)) * Screen.Height

// Determine Look Speed

var.speedX = (((var.actualX / (Screen.Width / 2)) - 1) * var.smooth) + var.xOffset
var.speedY = (((var.actualY / (Screen.Height / 2)) - 1) * var.smooth) + var.yOffset

// Calculate Point-Range Multipliers

If abs(var.speedX / var.deadzone) > 1 Then var.multX = 1 Else var.multX = abs(var.speedX / var.deadzone)
If abs(var.speedY / var.deadzone) > 1 Then var.multY = 1 Else var.multY = abs(var.speedY / var.deadzone)

// Scoped And Normal Multipliers

If Wiimote.A = True Then
var.speedX = var.speedX * var.zoom
var.speedY = var.speedY * var.zoom
Else

var.speedX = var.speedX * var.speed
var.speedY = var.speedY * var.speed
EndIf

// Move Cursor

If abs(var.speedX) > 0 Then Mouse.CursorPosX = Mouse.CursorPosX + (var.speedX * var.multX)
If abs(var.speedY) >0 Then Mouse.CursorPosY = Mouse.CursorPosY + (var.speedY * var.multY)

// Backup Last Motions
var.lastX = var.speedX
var.lasty = var.speedY

Else // If dot is not visible use last known value

If abs(var.lastX) > 1 Then Mouse.CursorPosX = Mouse.CursorPosX + var.lastX

If abs(var.lastY) > 1 Then Mouse.CursorPosY = Mouse.CursorPosY + var.lastY

EndIf

debug = 'Debug: SpeedY: ' + var.speedY + ' SpeedX: ' + var.speedX

13

3.4

Pros

Pros and Cons of GlovePie

Cons

Extensively programming experience is not
needed to use GlovePie it is relatively easy to

program.

Need several programs to connect Wiimote to a
program, such as MidiYoke for midi input and
PPjoy to connect all kinds of joystick devices.

It is also possible to use the Graphical User
Interface to map keys. Using this interface it is
only needed to press the keys that is desired to
map to each other. However it is not error-free
and it still necessary to define some range in
variables, like the angle when using the rotation.
The GUI
maximum range.

just specifies the minimum and

GlovePie is a little limited to connecting Wiimote-
gestures/buttons to keys. In some cases it would
be nice to be able to manipulate the variables or
have direct access to the variables that are send
from the Wiimote. For example mapping rotation
angle of the Wiimote to acceleration.

Any keyboard, mouse or joystick controlled
application/software can be controlled with a
Wiimote.

When using only GlovePie, Wiimote mapping is
restricted to keyboard or mouse input.

When mapping to keyboard keys, you have to
keep in mind that keyboard functions are shared
with all kinds of programs. Because of this reason
the program one wishes to control with the
Wiimote has to be activated and on-top in the
window layers.

GlovePie can only be used on a windows
operating system.

Without the distribution of the script it can only
be used on a single computer.

14

4. Conclusion

GlovePie enables users to actually choose any software they like to control with the Wiimote. Only thing
needed are the exact scripts and possible other interpreters or emulators. The need for own created scripts
and the fact that GlovePie has to run simultaneously with the application, does not make it an easy-to-use
program. An interesting subject for further study would be investigating the possibilities of programming
special pc-software or online-applications that are controlled by the Wiimote, without the use of GlovePie.
Various software has been created, such as Virtual Drum Kit, BlueTunes (an application to control various
media players without any scripting), etc. These programs can be found at
www.brianpeek.com/blogs/pages/net-based-wiimote-applications.aspx. They are created with a C-Sharp

library called Managed Library Wiimote which is developed by Brian Peek
(blogs.msdn.com/coding4fun/archive/2007/03/14/1879033.aspx). This library gives extensive possibilities for
the Wiimote. For example using it for motion capture2 or interactive installations.

Furthermore it is also interesting to investigate the possibilities in combination with Virtools. Virtools
supports a wide variety of 3D formats and allows users to create all sorts (web) applications. Recently the
developer of Virtools has added Wii building block to its latest release (Virtools 4), allowing the access of WIi
controllers on PCs with Virtools. Although Virtools is not an easy-to-use program it is still an interesting option
for further study, because of the important fact that you can import all sorts 3D models including animation,
which makes it very appropriate for creating Wiimote controlled games on PCs.

The last interesting subject is XNA. Microsoft recently released extension for its XNA development
platform which allows users to use the Wiimote as an input device. This platform is used to create games on
either PC or Xbox360. At the moment it can only be used for creating for PC, because the Xbox360 isn’t
equipped with Bluetooth.

2 Using only the capabilities of the Wiimote sets certain boundaries. To detect motion it uses the sensor bar, so
you always have to be in the field of view of the sensor bar.

15

http://www.brianpeek.com/blogs/pages/net-based-wiimote-applications.aspx

5. Bibliography

WiilLi (2007), visited on 5 August 2007 on
http://www.wiili.org/index.php/Main_Page

WiiBrew Wiki (2007), visited on 26 July 2007 on
http://wiibrew.org/index.php?title=Main_Page

GloviePie (2007), visited on 15 July 2007 on
http://carl.kenner.googlepages.com/glovepie_download
Midiox (2006), visited on 15 July 2007 on
http://www.midiox.com/

XNA (2007), visited on 5 August 2007 on
http://msdn2.microsoft.com/en-us/xna/default.aspx
Analog Devices (2007), visited on 5 August 2007 on
http://www.analog.com/en/prod/0,2877,ADXL330,00.html
Virtools (2007), visited on 5 August 2007 on
http://www.virtools.com/

Brain Peek (2007), visited on 6 August 2007 on
http://www.brainpeek.com/blog

Coding4Fun (2007), visited on 26 July 2007 on
http://blogs.msdn.com/coding4fun/archive/2007/03/14/1879033.aspx

16

http://www.wiili.org/index.php/Main_Page

	Studying The Wiimote
	Exploration To Enhance The Feeling Of Interactivity In Applications
	Index
	1. Introduction
	2. Input Device
	2.1 Wiimote
	2.2 Communication
	2.3 Motion Sensor

	3. GlovePie
	3.1 Application
	3.2 Scripting
	3.3 Scripts
	3.3.1 Powerpoint
	3.3.2 Midi VJ-tool
	3.3.3 Halflife2

	3.4 Pros and Cons of GlovePie

	4. Conclusion
	5. Bibliography

