
VRIJE UNIVERSITEIT

Advanced database

integration in Ximpel

interactive video

J.Heymans

22-Jun-11

Master thesis

Computer Science, Software Engineering

Faculty of Sciences

Vrije Universiteit van Amsterdam

Supervisor: prof. dr. Anton Eliëns

2

Contents

Abstract ... 4

1. Introduction ... 5

1.1. Problem Description .. 5

1.2. Constraints .. 6

1.3. Definitions and Acronyms ... 6

2. The Ximpel platform .. 7

2.1. Background .. 7

2.2. Flex .. 8

2.3. The benefit of adding database functionality ... 8

3. Project setup .. 10

3.1. Software development .. 10

3.2. Waterfall model ... 10

4. Project Requirements .. 12

4.1. Requirements analysis ... 12

4.2. Functional requirements ... 12

4.3. Non-functional requirements .. 14

4.3.1. Usability ... 14

4.3.2. Portability .. 14

4.3.3. Extensibility ... 14

4.3.4. Security .. 14

4.3.5. Modifiability .. 14

5. Project Design .. 15

5.1. Design .. 15

5.2. Design decisions .. 15

5.3. Related concerns ... 21

5.4. Database Structure .. 22

5.4.1. Storing data ... 22

5.4.2. Retrieving data .. 23

6. Implementation & Integration with Ximpel .. 25

6.1. Modifications to Ximpel source code .. 25

6.1.1. Added variables ... 25

6.1.2. Added functions .. 28

6.2. Custom media type ... 29

3

6.3. Generic database interaction design ... 31

7. Usage scenarios ... 32

7.1. A user’s perspective .. 32

7.1.1. Interaction scenario 1: Logging of (branch) question data ... 32

7.1.2. Interaction scenario 2: Logging of score data. .. 33

7.1.3. Interaction scenario 3: Logging of questions and score data. 33

7.2. A video provider’s perspective .. 34

7.2.1. Setup .. 34

7.2.2. Ximpel configuration ... 34

7.2.3. Writing to the database... 35

7.2.4. Generating a replay ... 37

8. Conclusions and recommendations ... 38

8.1. Conclusions .. 38

8.2. What is to follow? ... 39

References ... 40

Appendix: inserter.php .. 41

Appendix: example of ximpelConfig.xml with optional database tags ... 42

4

Abstract

Ximpel is an interactive video platform which provides users with the option to influence the course

of the video. Ximpel also provides a scoring system so it can also be used as a visual game platform.

My thesis will focus on expanding the possibilities of Ximpel by researching if it is possible for Ximpel

to save data, which then can be accessible from outside the Ximpel platform. During this research I

will also implement the discovered possibilities and document this process.

“What we have to learn to do, we learn by doing”

- Aristotle -

5

1. Introduction

The broader aim of this thesis besides the one described in the problem description, is ultimately to

encourage the readers to think about some of the different methods of application that are

achievable with Ximpel, but have not yet been fully explored or looked at. I end with a number of

conclusions and recommendations for the future group of users.

1.1. Problem Description

A Ximpel video can provide users with a set of interactive possibilities which include:

• The answering of questions. A correct answer can optionally be worth a number of points

and at the end of the video, the total score can be displayed.

• Choices in the path that the video will take. A traditional video is strictly linear, but in a

Ximpel video, the user can have a choice in what part of the video he watches.

In its current form Ximpel does not have the ability to save data, so the choices a user makes, or the

answers a user has given to questions is lost once the video ends. The lack of this ability prevents

Ximpel from being used for any purpose where the recording of user decisions and interactive data is

necessary.

For my Master’s thesis I will research if it is possible for Ximpel to save data which can then be

accessible even after the video has ended, and how this can be achieved. The preferred method for

saving data would be to write the information into a database. I have formulated the following main

questions which I will attempt to answer at the end of my project:

• Can database functionality be added to Ximpel?

• What is the benefit of adding database functionality to Ximpel?

• What database is best suited and why?

• How can the project be organized?

A secondary goal of my Master’s project is to provide functionality that enables Ximpel to query a

database for certain variables by using a custom media type designed for this. Besides providing a

specific example of how this can be done, I also need to provide a generic solution which can be

implemented in future versions of Ximpel. This solution must make it possible for mini-games and

other flash content to make use of the database feature Ximpel provides without modifying the

Ximpel application.

Besides answering the questions above, this thesis is meant to serve as a manual for further

extending database functionalities in Ximpel.

6

1.2. Constraints

During the project I have started to develop a custom Content Management System which makes it

easier to manage the information that Ximpel will write to the database. This will not be covered in

my thesis because it falls beyond the scope of adding database integration to the Ximpel platform.

When the CMS is finalized it will be included in the source code of the entire project, but as it will

simply be a couple of PHP functions which perform SELECT queries on the database it will not be

explained further in the thesis.

1.3. Definitions and Acronyms

User: The person that is playing the Ximpel video and interacting with it.

Video provider/Admin: The person that presents the Ximpel video to user and has determined which

information will be logged in the database.

PHP: A general-purpose scripting language originally designed for web development to produce

dynamic web pages. For this purpose, PHP code is embedded into the HTML source document and

interpreted by a web server with a PHP processor module, which generates the web page document

QOC diagram - QOC means Question (A question that deals with a concern), Options (The different

options I have in approaching the given concern) and Criteria (The Criteria that I have to take in to

consideration when finding an answer to the question).

7

2. The Ximpel platform

2.1. Background

Ximpel stands for the eXtensible Interactive Media Player for Entertainment and Learning.

 It was designed and developed by:

• Winoe Bhikharie, MSc (developer)

• Hugo Huurdeman, MSc (developer/designer)

• Marek van de Watering, MSc (designer)

• Anton Eliëns, prof. dr. (supervisor)

Ximpel was originally developed for the Clima Futura climate game and has also been used in

education for creating short viral videos which allow for further interactive explorations.

When watching a Ximpel interactive video the viewer can be presented with quiz questions

which have a true/false answer and branch questions. Branch questions require the user to

make a choice by clicking on one of the overlays currently displayed on the screen. These

overlays can be seen as possible answers to the branch questions. Clicking on one of these

overlays leads to the playback of videos that are relevant for the chosen answer. It is also possible to

add multiple-choice questions, which have the same functionality as the true/false questions.

Ximpel’s goal is to provide an open multimedia platform which can be used for both

entertainment and education. The features that Ximpel offers are:

• Customizable, clickable overlays and visuals.

These can be used to access different branches of the storyline and can be linked to both

external and internal information sources.

• Customizable questions.

• A scoring mechanism to give a certain weight to the answers given.

The variables, such as the clips to be shown, the branches, overlays, questions and score

points are all modifiable through a collection of 2 XML configuration files [1][2]. The Ximpel player

then reads the information stored in these files.

The 2 XML configuration files are:

• an playlist.xml

• ximpelConfig.xml

8

2.2. Flex

Ximpel was developed by using the open source Adobe Flex framework. It was originally released in

March 2004 by Macromedia which was purchased by Adobe in 2005.

The Flex SDK comes with a set of user interface components including buttons, list boxes, trees, data

grids, several text controls, and various layout containers. Charts and graphs are available as an add-

on. Other features like web services, drag and drop, modal dialogs, animation effects, application

states, form validation, and other interactions round out the application framework. Interactivity in

the Flex framework is achieved through the use of Actionscript.

For Ximpel to communicate with a database, modifications will have to be made to the source code.

While researching in which ways Actionscript can communicate with a database I discovered that it

actually cannot do this.

With the current release of the Flex SDK, the Actionscript can only communicate with a SQLite

database if the entire project is designed as an Adobe Air application [8].

An Adobe Air application is a standalone desktop application which cannot be deployed on the

internet.

While searching for a way to communicate with the database in another way I discovered that

Actionscript does offer a HTTP service which can perform both HTTP POST and HTTP GET requests.

This would be sufficient to get information out of Ximpel by posting the data to a URL. It became

clear that a middle-tier would be necessary which can handle the communication with Ximpel and

the database.

Because this middle-tier will be accessed by a HTTP POST or GET request, the most logical

implementation would be a web service that can communicate with a database. This web service will

probably be implemented using a server side scripting language such as PHP, ASP or JSP.

2.3. The benefit of adding database functionality

Knowing that it will probably be possible to add database functionality to Ximpel leads us to question

what the benefits can be. Because there is no literature available which covers the benefits of adding

database functionality to an interactive video platform, I researched some literature on the function

of databases in web 2.0. According to Web 2.0 Architectures [6]:

 Databases are typically used to persist data in a centralized repository designed in compliance with a

relational model. Other types include hierarchal databases and native XML databases. Each type of

database is tasked with handling centralized persistence of data that may be retrieved later for a

variety of purposes. Databases vary in size and complexity based on the amount and nature of the

data stored.

The obvious benefit of adding a database to Ximpel is that it can be used to store data in a

9

centralized repository. Because Ximpel currently does not save data in any form, it is impossible to

determine if a database will be the best way to store data. However, since databases are widely used

as data storage resources of websites and business applications it is relatively safe to assume that a

database will work well with Ximpel as well.

The benefit of saving information from Ximpel in a database can best be explained by the following

example:

Consider an educational video targeted at young children. In the video the children must identify the

word spoken by a character onscreen. They identify the word by clicking on the correct overlay which

represents the word. This video can help the children to enhance their vocabulary faster and in a fun

way.

A simple benefit of adding database functionality in this example would be that teachers can now

keep a record of how well each child is doing. They can see how many words are identified correctly

and can track the improvement of the children over an amount of time.

Besides the example above, database functionality will provide Ximpel with more possibilities such

as:

• Enabling Ximpel for possible commercial use

• Statistical Analysis on the stored data

• Generating a replay of a certain users playthru

10

3. Project setup

3.1. Software development

There are several different approaches to software development. Some take a more structured,

engineering-based approach to developing solutions, whereas others may take a more incremental

approach, where software evolves as it is developed piece-by-piece. Most methodologies share some

combination of the following stages of software development:

• Market research

• Gathering requirements for the proposed business solution

• Analyzing the problem

• Devising a plan or design for the software-based solution

• Implementation (coding) of the software

• Testing the software

• Deployment

• Maintenance and bug fixing

The combination of these stages is often referred to as the software development lifecycle, or SDLC.

Different approaches to software development may carry out these stages in different orders, or

devote more or less time to different stages. The level of detail of the documentation produced at

each stage of software development may also vary.

Several specific software development models exist to streamline the development process. Some of

these are:

• Waterfall model

• Spiral model

• Iterative and incremental development

• Agile development

• Code and fix

Each one has its pros and cons, and it is usually up to the development team to adopt the most

appropriate model for the project.

3.2. Waterfall model

Although I am not developing completely new software, I think it is best to approach the project as a

software development project. This will provide the structure that is required to successfully

complete the project and provide a guide for documenting the relevant phases of the project.

For my project I have chosen to follow the waterfall model.

11

The waterfall model can be considered the classic approach to software development.

In a pure waterfall model phases are not revisited once they have finished. Before moving on to a

next phase a review may occur which allows for the possibility of adding changes to a phase.

Although the waterfall model discourages revisiting and revising any prior phase once it’s completed

I will not enforce this during the project. My master’s project is a relatively small project with me

being the only developer, so the revising of previous phases will not have as much impact as it would

have in larger projects.

The phases of the waterfall model can be seen in the following model.

My project does not require all of the phases in the waterfall model. The phases which are necessary

for my project are:

• The Analysis phase.

In this phase the requirements of the project are determined.

This phase is covered in Chapter 4

• The design phase.

The design decisions are made in this phase. These decisions are based on the requirements

of the project. This phase is covered in Chapter 5.

• The implementation phase.

This is the actual writing of code. In my project this can be regarded as the modifications and

additions which are made to the Ximpel source code. This phase is covered in Chapter 6.

The remaining 2 phases will not be formally performed or documented, but testing will be done

throughout the project.

12

4. Project Requirements

4.1. Requirements analysis

Before starting a software development project, it is important to document the need and conditions

which the finished product will have to meet. The process that encompasses this task is called

Requirements analysis. In most software development projects there will be several stakeholders

involved who might each have their own set of requirements for the system which is being produced.

The documenting of these requirements can be achieved by performing the following tasks:

• Requirements elicitation

• Requirements analysis and negotiation

• Requirements specification

• Requirements validation

• Requirements management

After performing these tasks a list of requirements will have been formed and which needs to be

managed, because it is possible for requirements to change during the project, however this is

usually undesirable. For my master’s project the only stakeholder who needed to be elicited was my

master’s project supervisor. He made known the requirements that were important to him and I

combined these with some requirements of my own which I thought would be useful to the end

user. The resulting functional and non-functional requirements are described in the chapters 4.2 and

4.3.

4.2. Functional requirements

A functional requirement defines a function of the software system. A function is described as a set

of inputs, the behavior, and the outputs. Functional requirements are supported by non-functional

requirements (sometimes also known as quality requirements) which impose certain constraints on

the design or implementation of the system.

The functional requirements are first shown in the following generic diagram after which they are

described in more detail.

13

Requirement Requirement Definition

insert_branch_question_text The Ximpel application inserts the text of the

branch question which was presented to the

user into the database.

insert_user_given_answer The Ximpel application inserts the selected

answer from the user into the database. This can

then be true/false answer, or the chosen answer

of a multiple choice question.

insert_question_correct_answer The Ximpel application inserts the answer which

is regarded as the correct answer into the

database. This only applies to the true/false and

multiple choice questions.

insert_score At the end of the Ximpel presentation the

accumulated score is inserted into the database.

insert_branch_question_choice The Ximpel application inserts the name of the

overlay the user clicks on. This click on an

overlay mostly signifies a branching choice.

insert_current_video The Ximpel application inserts the currently

playing video into the database.

insert_userID The Ximpel application inserts a generated

userID in to the database.

generate_replay.xml The CMS of the system can generate a so called

replay.xml of a certain user’s playthru.

get_random_video The Ximpel application can select a random

video by using the custom media type.

get_ video The Ximpel application can select a video which

complies with certain criteria by using the

custom media type.

14

4.3. Non-functional requirements

A non-functional requirement is a requirement that specifies certain criteria that are used to judge

the operation of a system instead of focusing on specific behaviors [5]. A non-functional requirement

describes how the system is supposed to be in contrast to a functional requirement which describes

what a system is supposed to do. Non-functional requirements are often also referred to as qualities

of a system. Non-functional requirements can be divided into 2 main categories:

1. Execution qualities

these include such qualities as security and usability (which are visible at run time)

2. Evolution qualities

these include such qualities as testability, maintainability, extensibility and scalability. (which are

part of the static structure of the system)

4.3.1. Usability

Usability can be regarded as “the ease of use” of the system. This depends on the targeted user of

the system. In my master’s project the targeted user for whom usability is important is primarily the

administrator. The administrator determines which information is written to or can be extracted

from the database. Also the system must be easy to setup and deploy as a whole.

4.3.2. Portability

Portability means that the system should be easy to move from one environment to another. In the

case of my master’s project the system must be able to function on different platforms such as

windows and Linux.

4.3.3. Extensibility

Extensibility of the system means that the system can be easily expanded upon. In the case of my

master’s project, the modified code must be clear and understandable so it can be used in future

modifications or extensions of the system.

4.3.4. Security

The capability of the software product to protect information and data so that unauthorized persons

or systems cannot read or modify them and authorized persons or systems are not denied access to

them.

4.3.5. Modifiability

Modifiability means that the resulting system can be easily modified and the information about

modification is easy to find.

15

5. Project Design

5.1. Design

In this chapter I will describe the various design choices that were made during the project. I will list

each choice in a table which contains the considered options, the arguments for each option and the

resulting choice. After each “decision table” I will also have a small diagram which visually displays

the choice made and shows how it relates to the non-functional requirements.

5.2. Design decisions

Concern#1 Which database to use?

Ranking criteria Criteria#1: Usability.

Criteria #2: Portability.

Criteria #3: Extensibility.

Options Identifier: Name Concern#1-Option# 1 : MySQL

 Description The MySQL database that is used for storing information requires a

server to function.

 Status This option is rejected

 Relationship(s) Concern#2

 Evaluation Criteria#1: MySQL is easy to use and has a widespread user base, with

lots of information available.

Criteria#2: MySQL is not very portable because it requires a server to

function. This also means that when moving, the database an export

and import of the tables will be necessary.

Criteria#3: Because MySQL is widely used, it will be easy to understand

and extend the system that is using this database.

 Rationale of decision This option is rejected because portability is a major requirement for

the system.

 Identifier: Name Concern#1-Option#2: SQLite

 Description The SQLite database can be contained in a single file and does not

require a server to function.

 Status This option is accepted

16

 Relationship(s) -

 Evaluation Criteria#1: SQLite is very lightweight and easy to use, because it does

not require a running database server.

Criteria#2: With SQLite the entire database is contained within a single

file which makes it very portable. This database can be easily moved

between locations, and a novice user does not have to setup anything

in regard to the database for it to function properly.

Criteria#3: Because SQLite is widely used and supported, it will be easy

finding information and will be make it easy to extend as system that

uses SQLite.

 Rationale of decision This option is accepted because it satisfies all of the relevant criteria.

Diagram 1: Which database to use?

17

Concern#2 Which language to use for the CMS?

Ranking criteria Criteria #1: Extensibility.

Criteria #2: Modifiability.

Criteria #2: Portability.

Options Identifier: Name Concern#2-Option# 1 : PHP

 Description Developing the Content Management System in PHP to manage the

information inserted into the database. PHP is a server side embedded

programming language which is widely used and supported. PHP is

free to use and most webhosting providers offer support for it.

 Status This option is accepted

 Relationship(s) Concern#1 & Concern#3

 Evaluation Criteria #1: By using PHP it will be easy to extend the system, because

PHP has a low learning curve and support information is widely

available.

Criteria #2: Because PHP is widely supported it will be easy to modify

the code.

Criteria #3: PHP is provided by most of the webhosting providers and it

is very easy to setup your own PHP (apache) server locally, which

makes PHP very portable.

 Rationale of decision This option is accepted because it provides a high degree of

extensibility and modifiability while still offering portability.

 Identifier: Name Concern#2-Option#2: ASP/JSP

 Description ASP is a programming language created by Microsoft for creating

dynamic websites similar to those created with PHP. JSP is a Java

technology that allows software developers to create dynamically

generated web pages with HTML, XML, or other document types, in

response to a Web client request.

 Status This option is rejected

 Relationship(s) -

 Evaluation Criteria #1: The use of these programming languages will provide a

steeper learning curve and will make it harder to extend the resulting

system, especially for a novice user.

18

Criteria #2: Modifying the code will also be harder with these

languages because of the higher learning curve as well.

Criteria #3: Both ASP and JSP require specific servers to function; these

are not as widely offered by webhosting providers as PHP is.

 Rationale of decision This option is rejected because it does not satisfy our ranking criteria.

Diagram 2: Which language to use for the CMS?

Concern#3 How to communicate with the database?

Ranking criteria Criteria #1: Usability.

Criteria #2: Security.

Criteria #3: Portability.

Criteria #4: Extensibility

Options Identifier: Name Concern#3-Option# 1 : Thru a PHP gateway

 Description Communication with the database will be done by first posting the

variables to a PHP file which will in turn post the variables in to the

relevant tables in the database.

 Status This option is accepted

 Relationship(s) Concern#1

19

 Evaluation Criteria #1: PHP is a widely known and supported language which is

easy to use, and supporting information will be easy to find.

Criteria #2: Using PHP to insert data into the database security must

be considered. Care must be taken to prevent malicious use such as

SQL injection. Also, the file should only be called by the ximpel

application itself. Security can be a weak point of this approach.

Criteria #3: PHP is offered by many web hosting providers and it is very

easy to setup at home, so the system remains very portable.

Criteria #4: By having the database insertion code in a PHP file it will

be easier to extend the system down the line.

 Rationale of decision This option is accepted because it satisfies 3 out of 4 of our non-

functional requirements.

 Identifier: Name Concern#3-Option#2: Direct connection with SQLite database

 Description Having the Ximpel application itself handle the retrieving/posting of

information into and from the database. This option would prevent the

Ximpel application from being able to be deployed on the web as it

would become more of a desktop application.

 Status This option is rejected

 Relationship(s) -

 Evaluation Criteria #1: The system will remain easy to use with this option.

Criteria #2: Security will be better with this option, because the

database access code will be contained within the Ximpel application

itself.

Criteria #3: The system will be less portable in the sense that it will lose

the possibility to be deployed on the web with this option.

Criteria #4: This option will not satisfy the extensibility requirement,

because the source code of XImpel will need to be changed whenever

the database structure is altered.

 Rationale of decision This option is rejected because it does not satisfy our extensibility and

more importantly it does not satisfy the portability requirement.

20

Diagram 3: How to communicate with the database?

21

5.3. Related concerns

Some of the concerns described in the previous section are related to each other. In this section an

overview will be given of the relationships between these concerns.

Diagram 4: Relationships between the concerns.

22

5.4. Database Structure

5.4.1. Storing data

Before structuring the database, I first had to determine exactly which information would have to be

stored in it by the Ximpel application. The most relevant information that needs to be stored will be

the questions and answers that the user had come across and the total score accumulated by that

user. The information that is stored in the database must be detailed enough to be able to construct

a “replay” of the specific user playthru. Keeping this in mind, more information than just the question

and scoring was necessary.

 After experimenting with a few scenarios I brought the necessary variables down to the following:

Questions

• A unique user id

• The name of the video where the question was displayed

• The type of question (branch or normal question)

• The text of the question

• The answer given by the user

• The correct answer

Score

• A unique user id

• The total score

Video

• A unique user id

• The name of the video currently playing

• The ordering of the currently playing video (knowing if it the 1
st

, 2
nd

 , etc)

As you can see in the list above a unique user id is present in every table that contains information

inserted by the Ximpel application. The unique user id is necessary to be able to bind the different

variables to a specific user playthru. Also the name of the currently playing video is necessary

because in the replay we need to know which question belongs to which video. The ordering of the

video is also needed, because we need to know in which order to display the videos when running a

replay.

23

The required information mentioned above leads to the following database structure:

Diagram 5: Database structure of storable data by the ximpel application

5.4.2. Retrieving data

Besides storing data in the database, the Ximpel application will also be able to retrieve data from

the database. This will be done by using a custom media type. The information that can be retrieved

will mainly be videos. The tables from which the Ximpel application can retrieve its data, were

already created during my Bachelor’s project, but I will list the database structure here as a

reference.

These tables are part of the playlist builder and can currently be used to generate the playlist that

Ximpel requires. But as the database can contain many rows in the video table it is possible to query

the database for a video file that matches certain criteria. For this the relevant table would need to

be expanded with the extra information. In the case of the video table these could be:

• Date

• Topic

• Duration

24

Diagram 6: Database structure of the playlist builder

25

6. Implementation & Integration with Ximpel

The source files of Ximpel have the .mxml extension. MXML is an XML-based user interface markup

language, first introduced by Macromedia in March 2004. It can be compiled into SWF files by using

the Adobe Flash Builder IDE (formerly Adobe Flex Builder) or the free Flex SDK. Modifying these files

primarily required knowledge of Actionscript.

6.1. Modifications to Ximpel source code

Because I wanted to keep all the original functions of Ximpel intact, I decided from the start to not

alter any existing code, but to only make additions. By doing so I tried to keep the robustness of the

original Ximpel code and I also made it easier to remove or alter my additions if necessary in the

future. An added advantage of this approach is that my additions can also be more easily ported to

future versions of Ximpel.

The additions to the code are still very “raw” and there is room for improvement, but they definitely

work as expected. The 2 source files which I modified were:

• ximpelApp.mxml

• XimpelPlayer.mxml

6.1.1. Added variables

The variables I added to the Ximpel source code are listed below together with the rationale of why I

needed them.

• #1: DEFAULT_DATABASE_QUESTION_LOGGING

Source file: XimpelPlayer.mxml

Type: String.

This is a static variable which contains the value Questions: it is used to determine if question

logging is enabled.

• #2: DEFAULT_DATABASE_Score_LOGGING

Source file: XimpelPlayer.mxml

Type: String.

This is a static variable which contains the value Score: it is used to determine if score logging

is enabled.

26

• #3: DEFAULT_DATABASE_Question_AND_SCORE_LOGGING

Source file: XimpelPlayer.mxml

Type: String.

This is a static variable which contains the value QuestionsAndScore: it is used to determine if

question and score logging is enabled.

• #4: _database

Source file: XimpelPlayer.mxml

Type: String.

Added to function: configServiceResultHandler().

This is a variable which is populated at runtime with the value defined in the

XimpelConfig.xml by the video provider. This value will be compared against the static

variables #1, #2 and #3 to determine which type of database logging is required.

• #5: db_questionText

Source file: XimpelPlayer.mxml

Type: String.

Added to function: displayExtraQuestion().

This variable will be populated with the text of the question currently on screen. It will be

written to the database by function #3 whenever the user clicks an answer, thereby calling

the evaluateAnswer function.

• #6: db_userGivenAnswer

Source file: XimpelPlayer.mxml

Type: String.

Added to function: evaluateAnswer ().

This variable will be populated with the answer given by the user to the question currently

on screen. It will be written to the database by function #3 whenever the user clicks an

answer, thereby calling the evaluateAnswer function.

• #7: db_questionAnswer

Source file: XimpelPlayer.mxml

Type: String.

Added to function: evaluateAnswer ().

This variable will be populated with the correct answer to the question presented to the

user. The evaluateAnswer function will call function#3 which will write the information into

the database.

27

• #8: db_branchQuestionText

Source file: XimpelPlayer.mxml

Type: String.

Added to function: checkForBranchQuestion ().

This variable contains the value of the branch question currently on screen. It will be written

to the database by function #1. When the user clicks on an overlay, the function handleClick

is called which in turn calls function #1.

• #9: db_branchQuestionAnswer

Source file: XimpelPlayer.mxml

Type: String.

Added to function: handleMouseOver ().

This variable contains the chosen answer to the branch question currently on screen. It will

be populated when the user mouses over an overlay representing a possible answer to the

branch question. It will be written to the database by function #1. When the user clicks on an

overlay, the function handleClick is called which in turn calls function #1.

• #10: db_currentVideo

Source file: XimpelPlayer.mxml

Type: String.

Added to function: handlePlayMedia().

This variable contains the name of the currently playing video. This variable cannot be

influenced by the user. It is always written to the database by function #2 to keep track of

the different videos that the user has seen.

• #11: db_videoPlayOrder

Source file: XimpelPlayer.mxml

Type: Number.

Added to function: handlePlayMedia().

This variable contains the number of the currently playing video. This variable cannot be

influenced by the user. It is always written to the database by function #2 to keep track of

the order in which the different videos where displayed to the user.

• #12: db_tempVideoName

Source file: XimpelPlayer.mxml

Type: String.

Added to function: handlePlayMedia().

This variable is used to prevent the system from adding a video to the database when the

current video is looping. A video will only be added to the database when it differs from the

previously played video.

28

• The total score

Source file: ximpelApp.mxml

Type: String.

Function: goToEvaluationScreen().

There was no need to create a new variable or function for this information. The existing

gameScoreLabel.text variable was used.

• db_userID

Source file: XimpelPlayer.mxml

Type: String.

This variable is populated at runtime with a unique string. A user id has to be unique and is

the most important variable because it links all the information of 1 playthru together.

Without it, it would be impossible to reconstruct a user’s playthru. It is inserted to the

database by functions 1, 2 and 3 together with their individual variables.

6.1.2. Added functions

Besides the variables described in the previous section, it was also necessary to add some functions

to the Ximpel source code. I will list the added functions below.

• function#1: insertBranchQuestion()

Source file: ximpelApp.mxml

This function is called when the user clicks on an overlay thus indicating that a choice has

been made. When a choice is made, the information in the variables 8 & 9 is final, so they

can be written to the database. This function contains a hardcoded variable to determine the

type of information being posted. The value of this variable is: “branch”.

• function#2: insertVideoTrail()

Source file: ximpelApp.mxml

This function is called when a video file starts playing. It then compares variables 10 & 12

with each other. If they are not the same, the name of currently playing video is written to

the database. If they are the same, it means that the current video is looping and does not

need to be written to the database again. This function contains a hardcoded variable to

determine the type of information being posted. The value of this variable is: “videotrail”.

29

• function#3: insertQuestion()

Source file: ximpelApp.mxml

This function is called when the user clicks on an answer to a question. Variables 5, 6, and 7

are then written to the database. This function contains a hardcoded variable to determine

the type of information being posted. The value of this variable is: “question”.

6.2. Custom media type

For retrieving data from the database a custom media type can be used. The advantage of using a

custom media type is that you do not have to modify much of the Ximpel source code itself. The

custom media type can be created like any other. As an example I will describe how to create a

custom media type that can retrieve a video result from the database. There are many ways that this

can be achieved, so the solution that I present is by no means to be considered the best or only way.

In the example below the video provider can define query criteria in the form of an attribute of the

custom media type. The custom media type will pass the defined criteria on to the PHP gateway file

which will use the criteria to query the database and return the results. What this criteria is and how

many criteria are allowed can be customized by the video provider by making changes to the PHP

gateway file and to the custom media type. For my example I will assume that 1 criteria is used and

that it returns a string containing a video filename.

As we are only querying the database for a video file name that matches certain criteria, we can

reuse the StandardVideo media type almost completely to handle the rest of the video playing

configuration and settings.

1. First we copy the contents of the StandardVideo media type and paste them into our new

media type which we will call DatabaseVideo. So the filename will be DatabaseVideo.mxml.

2. We then have to modify the typeName() function so it returns a different type. We will call

our type dbvideo. This is the name of the tag in the playlist.xml which will be used to identify

our custom media type to Ximpel.

3. Next we have to implement a HTTPService that will allow us to do a call to the PHP gateway

which will in turn query the database and return our results. The code for this is:

Code fragment 1: HTTPService for performing post to PHP gateway

30

The <URL_TO_PHP_GATEWAY> must be replaced with the valid URL that leads to the PHP

gateway file that can retrieve data from the database. The PHP file will contain the actual

code that performs the query on the database.

4. We also have to implement a result handler which will handle the results that the PHP

gateway will provide us. For this example we assume that the PHP gateway will return a

string containing a file name of a video. So we define a global variable called resultVideo and

implement the result handler as follows:

Code fragment 2: Resulthandler which will populate global variable with result from query

5. Now we have to create a small function that will perform the call to the PHP gateway using

the previously created HTTPService.

Code fragment 3: Function that perform post of criteria variable to PHP gateway file

6. This queryDB function can be called from the playMedia() function and has to be passed the

criteria retrieved from the attribute of custom media type’s tag. In this example we have

named the attribute “query”, which would make the tag in the playlist.xml appear as:

<dbvideo query ="<criteriaString " />

The implementation of the function is as follows:

Code fragment 4: Call to queryDB function

7. Now our variable resultVideo contains the result of the query performed on the database.

This result is a file name of a video. All that is left to do, is to pass this variable to the

var videoURL:String in the playMedia () function and the video should play as if it was

normally retrieved from the playlist.xml.

As stated before, the example above assumes an error free approach to retrieving results from the

database. If for instance the database would return multiple results or no results at all, logic would

have to be added to the custom media type and/or the PHP gateway file to handle these scenarios

appropriately.

31

6.3. Generic database interaction design

The current database integration of Ximpel is pretty specific about which information is written to

the database. Because Ximpel can include other flash media, such as mini games or map applications

a generic way of passing information to the database could become necessary in the future. As part

of my master’s thesis I had to think of a possible generic database integration which would make it

possible to write data to the database with as little modifications to the Ximpel source code itself,

making it easier for novice users.

I would recommend adding a generic string variable to the ximpelApp.mxml source file, and define a

function similar to the function mentioned in section 4.1.2.which would pass this string variable on to

a PHP gateway file.

A mini game or other flash application could then place all the variables that it wants to insert into

the database in 1 string. For instance by creating JSON or XML string containing all the relevant

variables it wants to write to the database. To get this string to Ximpel an event and dispatch can be

defined from the mini game. The event contains the string field and can pass this string along from

the mini game to Ximpel. The ximpelApp listen for the Event and define a handler that can do the

eventual call to a PHP gateway file. The PHP gateway file can then parse the JSON or XML string and

process the variables as needed.

The Event and handler can be setup beforehand by developers, so the eventual creator/provider of

the mini game would only need to call the events and not need to implement much in the Ximpel

source code.

The diagram below illustrates the main idea of passing data in a generic way from a mini game/flash

application which runs inside Ximpel to the database.

32

7. Usage scenarios

Usage of the system can be seen from 2 perspectives. The first is the perspective of the user, which is

the person who is actually viewing and interacting with the Ximpel video. The second is the

perspective of the video provider/admin which is the person who has defined the playlist and

configuration of the Ximpel video and who has determined which data is written to the database.

The video provider/admin is also the one that determines what happens with the data after it has

been inserted into the database. A portion could be presented to the user in the form of a high

scores list for example.

7.1. A user’s perspective

The user makes choices and possibly answers questions while playing the Ximpel video. The user

does not have to be aware that his choices and answers are being stored in a database. I will provide

3 sequence diagrams that illustrate which information is written to the database from the user’s

perspective.

7.1.1. Interaction scenario 1: Logging of (branch) question data

In this scenario the user’s answers to questions and choices made at branch questions are written to

the database.

The information written to the database in this scenario is:

• User ID.

• Each video name.

• Question Text/ Branch question text.

• Answer the user has given/ branch choice chosen.

33

7.1.2. Interaction scenario 2: Logging of score data.

In this scenario only the total score is written to the database. The user watches the entire video and

the accumulated score is saved in the database when the summary screen is present to the user.

The information written to the database in this scenario is:

• User ID.

• Each video name

• Total score

7.1.3. Interaction scenario 3: Logging of questions and score data.

In this scenario both total score and question answers or choices are written to the database.

The information written to the database in this scenario is:

• User ID.

• Each video name.

• Question Text/ Branch question text.

• Answer the user has given/ branch choice chosen.

• Total score

34

7.2. A video provider’s perspective

The video provider’s perspective focuses on the setup, configuration of the Ximpel and the

management of the information that is written to the database.

7.2.1. Setup

Before the database features of Ximpel can be used, the video provider has to first setup the SQLite

database and create the needed tables. This can be done easily by uploading all of the files in the

folder named PHP. Then navigate to the following URL:

http://<your_domain>/<path_to_folder_where_uploaded_files_are>/install.php.

This will automatically create the database and the required tables. After this process is complete, a

properly configured Ximpel will be able to communicate with the database.

7.2.2. Ximpel configuration

Ximpel writes to the database indirectly by performing a HTTP POST request with the information to

a PHP gateway. The URL where Ximpel can reach this PHP file can be configured in the

ximpeConfig.xml by adding the databaseUrl tag. An example of what this looks like is:

• <databaseUrl>www.example.com/inserter.php </databaseUrl>

A valid URL is necessary for Ximpel to communicate with the PHP gateway, replace

www.example.com with your own valid domain. Also replace /inserter.php with the correct path

that leads to your PHP gateway file (the default name of this file is inserter.php).

35

The video provider then determines which information is written to the database. This can be done

by adding a database tag to the XimpelConfig.xml file. The tag can contain one of three text strings

which each represent a logging option, these are:

• Questions

• Score

• QuestionsAndScore

The entire line of text which needs to be added to the XimpelConfig.xml will then be one of the

following:

• <database>Questions</database>

• <database>Score</database>

• <database> QuestionsAndScore </database>

7.2.3. Writing to the database

After adding the required tag and the chosen logging option to the ximpelConfig.xml file, the video

provider can choose to modify the PHP gateway file. This file is named inserter.php by default and

contains a few functions which take care of writing the posted information to the database, these

functions are:

• writeQuestionData()

• writeBranchData()

• writeVideoTrail()

• writeScore()

Each of these functions populates a number of local variables with the posted variables it receives

and performs an INSERT query on the database. The video provider can modify these functions if

he/she so chooses, but he/she has to keep in mind that some alterations might require a

modification of the database structure as well.

The following is a code snippet of these functions and the full source code of this file can be found in

the appendix.

36

37

7.2.4. Generating a replay

One of the most important requirements of what can be done with the data that is stored in the

database is the ability to recreate a user’s playthru. This can be done by navigating to the

replayGenerator.php .

The video provider is presented with a table of which each row contains a user id. Each user id

represents an individual playthru. Next to each user id is a link titled “generate replay”. When the

video provider clicks on the “generate replay” link he is presented with a downloadable replay.xml

file.This xml file is in the same format as a normal Ximpel playlist.xml and must be used in the same

way.

The difference between the replay.xml and the playlist.xml is, that in the replay.xml there are no user

interactive elements. When running Ximpel with the replay.xml as a playlist, all the videos that the

original user has viewed will be displayed in the same order. If the original user was presented with

questions (the correctness of the answer is not important)these will be displayed on a standard

overlay together with the answer the user had given, as well as the correct answer to the question.

The same is true for branch question information and at the end of the video the total score acquired

by the original user will be displayed on an overlay as well.

The way the replay Generator compiles a replay is:

1. Using the unique user ID, a lookup is performed for all the videos that have the same unique

user ID in the VideoResults table.

2. The results of video lookup are arranged in ascending order.

3. For each video found, a lookup is performed on the QuestionResults table where for each

result an overlay will be created with the needed information.

4. All the results are placed in xml format in the same way a playlist.xml would be constructed.

The replay.xml will be playable in Ximpel regardless if Ximpel has database logging enabled.

38

8. Conclusions and recommendations

8.1. Conclusions

At the beginning of this thesis I formulated some questions which would have to be answered before

and during the master’s project. That it is possible to add database functionality to Ximpel has been

proven and the benefits have been described in chapter 2. The fact that Ximpel cannot interact with

the database directly turned out to be a positive aspect.

By having a middle-tier in the form a PHP gateway file, it makes it much easier for future developers

to modify the database structure without having to modify the Ximpel source code. It also works very

well with the proposed generic method for reading information from the database by using a custom

media type.

By approaching the project as a traditional software development project was very educational. Even

if I was the only developer I can see how important it is to have structure that can guide you during

the project. This will of course be even more important when developing larger software products

with multiple teams of developers.

Evaluating the project can best be done by determining if the resulting software satisfies the

requirements established at the start. While the system provides all the functions required by the

functional requirements, I would like to take a closer look at the non-functional requirements.

Usability

The resulting software is definitely easy to use and should not be harder to understand then Ximpel

itself.

Portability

The resulting software provides the same degree of portability as the normal Ximpel system. The

only difference is that the amount of files which has to be moved between environments has

increased.

Extensibility & Modifiability

During the project I was able to reduce my modifications and additions to the Ximpel source code

considerably. I have taken care to provide comments at all my modifications in the source itself and

have described the changes in this thesis. I assume that this will provide a clear overview for anyone

who wants to continue extending the software.

39

Security

Security is one of the points where improvements can definitely be added. The current software does

not take security measures into account. The current software would not be ready for public release,

but it can be used in a controlled environment and for educational purposes.

Overall I think the project has been successful; no project is ever a 100% success and there is always

room for improvement. I think it was a worthwhile goal to integrate database functionality into

Ximpel, because it has greatly increased the possibilities.

8.2. What is to follow?

It would be interesting to further develop the database functionalities of Ximpel. Currently the

system can write information to the database and can read information from the database. But these

functionalities do not influence each other. For example, currently Ximpel cannot write to the

database and then wait for certain information to become available in the database before

continuing.

If the database functionalities were further developed, Ximpel could perhaps be used for multiplayer

games with the database acting as a shared resource indicating when one player has performed a

certain task and the other player can then react to this.

Further developing the database functionalities would probably mean creating a completely new

version of Ximpel as the modification would probably become very invasive. Because of this, I think it

would be best to develop this version of Ximpel next to the original one and perhaps give the new

version a different name.

I myself, having acquired the insight, understanding and interest through this thesis study; plan on

working on Ximpel in my free time, as I think it remains a very interesting platform with lots of

potential.

40

References

1. Playlists in XIMPEL. Retrieved April 2011, from

http://ximpel.few.vu.nl/tutorials/Playlists_in_XIMPEL.html

2. Configuration files in XIMPEL. Retrieved April 20, 2011, from

http://ximpel.few.vu.nl/tutorials/Configuration_files_in_XIMPEL.html

3. Overlays in XIMPEL. Retrieved June 22, 2009,

http://ximpel.few.vu.nl/tutorials/Overlays_in_XIMPEL.html

4. Eliëns A., Huurdeman H., van de Watering M., Bhikharie S.V., XIMPEL Interactive Video --

between narrative(s) and game play, Proc. GAME-ON 08, Nov 17-19, Valencia, Spain

5. Hans van Vliet. (2007) Software Engineering: Principles and Practice. 2nd edn. John Wiley & Sons

6. James Governor, Dion Hinchcliffe & Duane Nickull. (2009) Web 2.0 Architecture. O’Reilly Media,

Inc

7. Royce, W. (1970) Managing the development of large software systems. In Proceedings of the

IEEE Western Electronic show and convention. (WESCON), 25 – 28 Aug 1970, Los Angeles, USA,

pp. 1-9.

8. Flex documentation. Retrieved March 2011 from

http://www.adobe.com/devnet/flex/documentation.html

41

Appendix: inserter.php

42

Appendix: example of ximpelConfig.xml with optional database tags

* Note, that only one of the <database> tags must be used at a time.

