
A platform for Embodied Conversational Agents based on
Distributed Logic Programming ∗

Anton Eliëns, Zhisheng Huang and Cees Visser
Intelligent Multimedia Group

Vrije Universiteit, Amsterdam,
Department of Mathematics and Computer Science

De Boelelaan 1081, 1081 HV Amsterdam, Netherlands

{eliens,huang,ctv}@cs.vu.nl

ABSTRACT
In this paper we will outline the requirements for a software
platform supporting embodied conversational agents. These
requirements encompass computational concerns as well as
presentation facilities, providing a suitably rich environment
for applications deploying conversational agents.

We will then propose a platform based on the distributed
logic programming language DLP and X3D, the extensible
Web3D format. Three case studies will be described, illus-
trating the potential of the DLP+X3D platform: a multi-
user game with autonomous players, avatars commenting on
rich media presentations, and a gesture scripting language
for humanoids based on dynamic logic.

In conclusion, we will discuss related work and review the
evaluation criteria that pertain to the deployment of embod-
ied conversational agents in rich media 3D environments.

1. INTRODUCTION
A variety of applications may benefit from deploying em-
bodied conversational agents, either in the form of animated
humanoid avatars or, more simply, as a ’talking head’. An
interesting example is provided by Signing Avatar1, a system
that allows for translating arbitrary text in both spoken
language and sign language for the deaf, presented by ani-
mated humanoid avatars. Here the use of animated avatars
is essential to communicate with a particular group of users,
using the sign language for the deaf.

Other applications of embodied conversational agents in-
clude e-commerce and social marketing, although in these

∗http://www.cs.vu.nl/eliens/research/media/platform.html
1http://www.signingavatar.com

cases it may not always be evident that animated avatars or
faces actually do provide added value.

Another usage of embodied conversational agents may be
observed in virtual environments such as Active Worlds2,
blaxxun Community3 and Adobe Atmosphere4. Despite the
rich literary background of such environments, including
Neil Stephenson’s Snow Crash, the functionality of such
agents is usually rather shallow, due to the poor repertoire of
gestures and movements on the one hand and the restricted
computational model underlying these agents on the other
hand. In effect, the definition of agent avatars in virtual
environments generally relies on a proprietary scripting lan-
guage which, as in the case of blaxxun Agents, offers only
limited pattern matching and a fixed repertoire of built-in
actions.

In contrast, the scripting language for Signing Avatar is
based on the H-Anim5 standard and allows for a precise
definition of a complex repertoire of gestures, as exemplified
by the sign language for the deaf. Nevertheless, also this
scripting language is of a proprietary nature and does not
allow for higher-order abstractions of semantically meaning-
ful behavior.

In this paper, we propose an architecture and software plat-
form for embodied conversational agents that provides the
computational facilities for defining semantically meaningful
behaviors and that allows for a rich presentational envi-
ronment, in particular 3D virtual environments that may
include streaming video, text and speech.

structure The structure of this papers is as follows. In
section 2, we will outline the requirements for a rich me-
dia software platform supporting embodied conversational
agents. Then, in section 3, we will propose a platform based
on the distributed logic programming language DLP and
X3D. In section 4, three case studies will be described, illus-

2http://www.activeworlds.com
3http://www.blaxxun.com
4http://www.adobe.com/products/atmosphere
5http://www.hanim.org

trating the potential of the DLP+X3D platform. In section
5 we will review the evaluation criteria that pertain to the
deployment of embodied conversational agents in rich media
3D environments, and in section 6 we will discuss related
work. Finally, in section 7, we will give some conclusions
and indications for future work.

2. REQUIREMENTS
There is a wide range of presentation platforms for embodied
conversational agents. On one end of the spectrum we have
digitized video, as for example in the early versions of the
Ananova6 newsreader, On the other end of the spectrum we
have rich media real-time 3D platforms, as in the aforemen-
tioned virtual environments.

For both type of systems, advanced authoring tools may be
used to create content. In addition, however, for the latter
type of systems also declarative means of modeling may be
used as well as a programmatic interface to create dynamic
content.

Based on our experiences, which are reported in section 4,
we have a clear preference for web-based real-time 3D en-
vironments with a strong programmatic interface. In other
words, this excludes systems that rely on offline rendering,
but also systems that rely on the native graphics of a par-
ticular machine. Also, we rather program the dynamic be-
havior than create such behavior using advanced authoring
tools. However, our approach allows for easily incorporating
content produced by these tools. Our requirements with
respect to a platform supporting such environments may be
summarized as follows.

• declarative language – for agent support

• multiple threads of control – for multiple shared objects

• distributed communication – networking capabilities

As indicated in section 4, an environment meeting these
requirements may be used to create agent-based multi-user
virtual environments. We have a definite preference for a
logic-based declarative language that provides direct sup-
port for intelligent agents. As we have shown in [1], both
autonomous agents and shared objects may be realized using
agent-technology. The platform must, furthermore, provide
sufficient networking capabilities, so that changes to shared
objects in a world can be propagated among multiple users.
As a remark, in our platform we have used the X3D/VRML
External Authoring Interface (EAI) to control the 3D envi-
ronments programmatically.

scripting behavior Now, although a platform as described
above offers powerful computational capabilities, this is clearly
not enough to create embodied conversational agents with a
rich repertoire of gestures. On top of this platform, we need
a suitably expressive scripting language for defining gestures
and driving the behavior of our humanoid agent avatars.

6http://www.ananova.com

In section 4.3, an outline is given of a gesture scripting
language for humanoids based on the H-Anim 1.1 standard.
The design of the scripting language was motivated by the
requirements listed below.

• convenience – for non-professional authors

• compositional semantics – combining operations

• re-definability – for high-level specification of actions

• parametrization – for the adaptation of actions

• interaction – with a (virtual) environment

As described in section 4.3, we developed a scripting lan-
guage STEP that, to our belief, meets these requirements [2].
STEP is based on dynamic logic [3] and allows for arbitrary
abstractions using the primitives and composition operators
provided by our logic.

3. THE DLP+X3D PLATFORM
In [1], we have described a platform for virtual environments
based on agent technology. In effect, our platform is the
result of merging VRML with the distributed logic program-
ming language DLP, using the VRML External Authoring
Interface. This approach allows for a clear separation of con-
cerns, modeling 3D content on the one hand and determining
the dynamic behavior on the other hand. As a remark,
recently we have adopted X3D as our 3D format. The
VRML profile of X3D7 is an XML encoding of VRML97.

The language DLP is a distributed object-oriented extension
of Prolog [4]. It supports multiple inheritance, non-logical
instance variables and multi-threaded objects (to allow for
distributed backtracking). Object methods are collections of
clauses. Method invocation is dealt with as communication
by rendez-vous, for which synchronization conditions may
be specified in so-called accept statements. The current
implementation of DLP is built on top of Java.

To effect an interaction between the 3D content and the
behavioral component written in DLP, we need to deal with
two issues:

• control points: get/set – position, rotation, viewpoint

• event-handling – asynchronous accept

We will explain each of these issues separately below. In
addition, we will indicate how multi-user environments may
be realized with our technology.

control points The control points are actually nodes in
the VRML scenegraph that act as handles which may be
used to manipulate the scenegraph. In effect, these handles
are exactly the nodes that may act as the source or target of
event-routing in the 3D scene. As an example, look at the
code fragment below, which gives a DLP rule to determine
whether a soccer player must shoot:

7http://www.web3d.org/fs x3d.htm

findHowToReact(Agent,Ball,Goal,shooting) :-
get(Agent,position,sfvec3f(X,Y,Z)),
get(Ball,position,sfvec3f(Xb,Yb,Zb)),
get(Goal,position,sfvec3f(Xg,Yg,Zg)),
distance(sfvec3f(X,Y,Z),sfvec3f(Xb,Yb,Zb),DistB),
distance(sfvec3f(X,Y,Z),sfvec3f(Xg,Yg,Zg),DistG),
DistB =< kickableDistance,
DistG =< kickableGoalDistance.

This rule will only succeed when the actual distance of the
player to the goal and to the ball satisfies particular con-
ditions. In addition to observing the state of the 3D scene
using the get predicate, changes to the scene may be effected
using the set predicate.

event handling Our approach also allows for changes in
the scene that are not a direct result of setting attributes
from the logic component. Therefore we need some way to
intercept events. In the example below, we have specified an
observer object that has knowledge of, that is inherits from,
an object that contains particular actions.

:- object observer : [actions].
var slide = anonymous, level = 0, projector = nil.

observer(X) :-
projector := X,
repeat,

accept(id, level, update, touched),
fail.

id(V) :- slide := V.
level(V) :- level := V.
touched(V) :- projector←touched(V).
update(V) :- act(V,slide,level).
:- end object observer.

The constructor sets the non-logical variable projector and
enters a repeat loop to accept any of the incoming events
for respectively id, level, update and touched. Each event
has a value, that is available as a parameter when the cor-
responding method is called on the acceptance of the event.
To receive events, the observer object must be installed as
the listener for these particular events.

The events come from the 3D scene. For example, the
touched event results from mouse clicks on a particular ob-
ject in the scene. On accepting an event, the corresponding
method or clause is activated, resulting in either chang-
ing the value of a non-logical instance variable, invoking a
method, or delegating the call to another object.

An observer of this kind is used in the system described in
section 4.2, to start a comment (dialog) on the occurrence
of a particular slide.

multi-user virtual environments The DLP platform
offers direct support for autonomous agents, as for example

the players in the soccer game described in section 4.1.
However, our agent technology may also be used to realize
multi-user virtual environments. In particular, we distin-
guish between the following types of agents:

• object agents – control single shared objects (pilot at server,
drone at client)

• user agent – controls users’ avatar (pilot at user side, drone
at server or clients)

• autonomous agents – like football player, with own avatar
(pilot at server, drone at clients)

The terminology, pilot and drone, stems from the Living
Worlds proposal, to indicate the difference between the orig-
inal object (pilot) and the objects that replicate that object
(drones). It extends the taxonomy of agents introduced in [5]
to allow for shared objects.

4. CASE STUDIES
To illustrate the potential of our DLP+X3D platform, we
will briefly sketch three case studies, respectively a multi-
user soccer game with autonomous player agents (fig. a),
the use of dialogs in VR presentations (fig. b), and a script-
ing language for specifying gestures and movements for hu-
manoids (fig. c).

4.1 Multi-user soccer
The various aspects of our multi-user soccer game are re-
ported in more detail in [1]. We chose the soccer game as
a demonstrator or target application because it provided us
with a number of challenges, as indicated below.

• multiple (human) users – may join during the game

• multiple agents – to participate in the game (e.g. goal-
keeper)

• reactivity – players (users and agents) have to react quickly

• cooperation/competition – requires intelligent communica-
tion

• dynamic behavior – sufficiently complex (dynamic) 3D scenes

The soccer player agents each have a simple cognitive loop
based on the extended BDI model described in [6], which
may be summarized as sense, think, act. 8

(a) soccer game

8 The users’ avatars do not have any cognitive model, but
act directly on the users’ keyboard and mouse input.

Furthermore, to allow multiple users to join the game, tak-
ing the place of autonomous agent players if necessary, we
designed a special purpose Agent Communication Language
(ACL) to deal with the communication necessary to keep
the world updated, as previously outlined in the discussion
on multi-user virtual environments. The message format is,
schematically: Action, Type, Parameters.

• register game: [register, game name, from(Host)]

• tell new player: [tell, new player, user(Host,Name)]

• tell kick ball: [tell, kick ball, [user(Host,Name), force(X,Y,Z)
]]

• ask game score: [ask, game score, user(Host,Name)]

Other message types include:

register accept, register wait, tell position, tell rota-

tion, tell game score, reply game score, unregister

game, reply unregister game, player gone ...

It is interesting to note that we may significantly optimize
on the communication load if we introduce additional com-
pound messages such as run & trace ball, to replace a se-
quence of primitive messages.

(b) dialog in context

4.2 Dialogs in Virtual Environments
Desktop VR is an excellent medium for presenting informa-
tion, for example in class, in particular when rich media or
3D content is involved. At VU, we have been using presen-
tational VR for quite some time, and recently we included
dialogs using balloons (and possibly avatars) to display the
text commenting on a particular presentation, [7]. See figure
(b) for an example displaying a virtual environment of the
VU, a propaganda movie for attracting students, and two
avatars commenting on the scene. The avatars and their
text are programmed as annotations to a particular scene
as described below.

Each presentation is organized as a sequence of slides, and
dependent on the slides (or level within the slide) a dialog
may be selected and displayed. See the observer fragment
in section 3.

Our annotation for dialog text in slides looks as follows:

<phrase right="how∼are∼you">
<phrase left="fine∼thank∼you"/>
<phrase right="what do∼you think∼of studying ..."/>
...
<phrase left="So,∼what∼are you?"/>
<phrase right="an ∼agent" style="[a(e)=1]"/>
<phrase left="I always∼wanted to be∼an agent"

style="[a(e)=1]"/>

In figure (b), you see the left avatar (named cutie) step
forward and deliver her phrase. This dialog continues until
cutie remarks that she always wanted to be an agent. The
dialog is a somewhat ironic comment on the contents of the
movie displayed, which is meant to introduce the VU to
potential students.9

Furthermore, there are a number of style parameters to be
dealt with to decide for example whether the avatars or per-
sona are visible, where to place the dialogs balloons on the
display, as well as the color and transparancy of the balloons.
To this end, we have included a style attribute in the phrase
tag, to allow for setting any of the style parameters.

Apart from phrases, we also allow for gestures, taken from
the built-in repertoire of the avatars. In section 4.3 we
discuss how to extend the repertoire of gestures, using a
gesture specification language.

Both phrases and gestures are compiled into DLP code and
loaded when the annotated version of the presentation VR
is started.

4.3 STEP – a scripting language for embodied
agents

Given the use of humanoid avatars to comment on the con-
tents of a presentation, we may wish to enrich the repertoire
of gestures and movements to be able, for example, to in-
clude gestural comments or even instructions by gestures.

Recently, we have started working on a scripting language
for humanoids based on dynamic logic. The STEP scripting
language consists of basic actions, composite operators and
interaction operators (to deal with the environment in which
the movements and actions take place).

The basic actions of STEP consist of:

• move – move(Agent,BodyPart,Direction,Duration)

• turn – turn(Agent,BodyPart,Direction,Duration)

These basic actions are translated into operations on the
control points as specified by the H-Anim 1.1 standard.

As composite operators we provide sequential and parallel
composition, as well as choice and repeat. These composite
operators take both basic actions and user-defined actions
as parameters.

Each action is defined using the script, by specifying an
action list containing the (possibly compound) actions of
9 Clearly, our approach is reminiscent to the notorious
Agneta & Frida characters developed in the Persona project.
See http://www.sics.se/humle/projects/persona/web

which that particular action consists. As an example, look
at the definition of walking below.

script(walk(Agent), ActionList) :-
ActionList = [

parallel([turn(Agent,r shoulder,back down2,fast),
turn(Agent,r hip,front down2,fast),
turn(Agent,l shoulder,front down2,fast),
turn(Agent,l hip,back down2,fast)]),

parallel([turn(Agent,l shoulder,back down2,fast),
turn(Agent,l hip,front down2,fast),
turn(Agent,r shoulder,front down2,fast),
turn(Agent,r hip,back down2,fast)])

], !.

Notice that the Agent that is to perform the movement is
given as a parameter. (Identifiers starting with a capital act
as a logical parameter or variable in Prolog and DLP.)

(c) walking humanoid

Interaction operators are needed to conditionally perform
actions or to effect changes within the environment by ex-
ecuting some command. Our interaction operators include:
test, execution, conditional and until.

Potentially, an action may result in many parallel activities.
To control the number of threads used for an action, we have
created a scheduler that assigns activities to a thread from
a thread pool consisting of a fixed number of threads.

As a demonstrator for STEP, we envisage to create an in-
structional VR for Tai Chi, the Chinese art of movement.

XML encoding Since we do not wish to force the average
user to learn DLP to be able to define scripts in STEP, we
are also developing XSTEP, an XML encoding for STEP.
We use seq and par tags as found in SMIL10, as well as
gesture tags with appropriate attributes for speed, direction
and body parts involved. As an example, look at the XSTEP
specification of the walk action.

<action type=”walk(Agent)”>
<seq>
<par speed=”fast”>
<gesture type=”turn” actor=”Agent” part=”r shoulder”

dir=”back down2”/>
...
</par>
<par speed=”fast”>
...
<gesture type=”turn” actor=”Agent” part=”r hip”

dir=”back down2”/>

10http://www.w3.org/AudioVideo

</par>
</seq>
</action>

Similar as with the specification of dialog phrases, such a
specification is translated into the corresponding DLP code,
which is loaded with the scene it belongs to. For XSTEP
we have developed an XSLT stylesheet, using the Saxon11

package, that transforms an XSTEP specification into DLP.
We plan to incorporate XML-processing capabilities in DLP,
so that such specifications can be loaded dynamically.

5. EVALUATION CRITERIA
The primary criterium against which to evaluate applica-
tions that involve embodied conversational agents is whether
the application becomes more effective by using such agents.
Effective, in terms of communication with the user. Evi-
dently, for the Signing Avatar application this seems to be
quite obvious. For other applications, for example negotia-
tion in e-commerce, this question might be more difficult to
answer.

As concerns the embedding of conversationl agents in VR,
we might make a distinction between presentational VR,
instructional VR and educational VR. An example of ed-
ucational VR is described in [8]. No mention of agents was
made in the latter reference though. In instructional VR,
explaining for example the use of a machine, the appearance
of a conversational agent seems to be quite natural. In
presentational VR, however, the appearance of such agents
might be considered as no more than a gimmick.

Considering the use of agents in applications in general,
we must make a distinction between information agents,
presentation agents and conversational agents. Although
the boundaries between these categories are not clearcut,
there seems to be an increasing degree of interactivity with
the user.

From a system perspective, we might be interested in what
range of agent categories the system covers. Does it provide
support for managing information and possibly information
retrieval? Another issue in this regard could be whether the
system is built around open standards, such as XML and
X3D, to allow for the incorporation of a variety of content.

Last but not least, from a user perspective, what seems
to matter most is the naturalness of the (conversational)
agents. This is determined by the graphical quality, as
well as contextual parameters, that is how well the agent
is embedded in its environment. More important even are
emotive parameters, that is the mood and style (in ges-
tures and possibly speech) with which the agents manifest
themselves. In other words, the properties that determine
whether an agent is (really) convincing.

6. RELATED WORK
There is an enormous amount of research dealing with vir-
tual environments that are in one way or another inhabited
by embodied agents. By way of comparison, we will discuss
a limited number of related research projects.

11http://saxon.sourceforge.com

As systems that have a comparable scope we may mention
[9] and DIVE12, that both have a client-server architecture
for realizing virtual environments. Our DLP+X3D platform
distinguishes itself from these by providing a uniform pro-
grammatic interface, uniform in the sense of being based on
DLP throughout.

The Parlevink13 group at the Dutch University of Twente
has done active research in applications of virtual environ-
ments with agents. Their focus is, however, more on lan-
guage processing, whereas our focus may be characterized
as providing innovative technology.

Both [10] and [11] deal with incorporating logic program-
ming within VRML-based scenes, the former using the Ex-
ternal Authoring Interface, and the latter inline logic scripts.
Whereas our platform is based on distributed objects, Jinni14

deploys a distributed blackboard to effect multi-user syn-
chronisation.

Our scripting language may be compared to the scripting
facilities offered by Alice15, which are built on top of Python.
Also, Signing Avatar has a powerful scripting language. How-
ever, we wish to state that our scripting language is based
on dynamic logic, and has powerful abstraction capabilities
and support for parallelism.

Finally, we seem to share a number of interests with the
VHML16 community, which is developing a suite of markup
languages for expressing humanoid behavior. We see this
activity as complementary to ours, since our research pro-
ceeds from technical feasibility, that is how we can capture
the semantics of humanoid gestures and movements within
our dynamic logic, which is implemented on top of DLP.

7. CONCLUSIONS, FUTURE RESEARCH
In summary, we may state that our DLP+X3D platform is
a powerful, flexible and high-level platform for developing
VR applications with embodied agents. It offers a clean
separation of modeling and programming concerns. On the
negative side, we should mention that this separation may
also make development more complex and, of course, that
there is a (small) performance penalty due to the overhead
incurred by using the External Authoring Interface.

Where our system is currently lacking, clearly, is adequate
computational models underlying humanoid behavior, in-
cluding gestures, speech and emotive characteristics. The
VHML effort seems to have a rich offering that we need to
digest in order to improve our system in this respect.

12http://www.sics.se/dive
13http://parlevink.cs.utwente.nl
14http://www.binnetcorp.com/Jinni
15http://www.alice.org
16http://www.vhml.org

Our choice to adopt open standards, such as XML-based
X3D, seems to be benificial, in that it allows us to profit from
the work that is being done in other communities, so that
we can enrich our platform with the functionality needed to
create convincing embodied agents in a meaningful context.

8. REFERENCES
[1] Huang Z., Eliëns A., Visser C. (2002), 3D

Agent-based Virtual Communities. In: Proc. Int.
Web3D Symposium, Wagner W. and Beitler M.(
eds), ACM Press, pp. 137-144

[2] Huang Z., Eliëns A., Visser C. (2002b), STEP – a
scripting language for Embodied Agents, PRICAI-02
Workshop – Lifelike Animated Agents: Tools,
Affective Functions, and Applications, Tokyo,
19/8/2002

[3] Harel D. (1984), Dynamic Logic. In: Handbook of
Philosophical Logic, Vol. II, D. Reidel Publishing
Company, 1984, pp. 497-604

[4] Eliëns A. (1992), DLP – A language for Distributed
Logic Programming, Wiley

[5] Huang Z., Eliëns A., van Ballegooij A., De Bra P.
(2000), A Taxonomy of Web Agents, IEEE
Proceedings of the First International Workshop on
Web Agent Systems and Applications (WASA ’2000),
2000.

[6] Huang Z., Eliëns A., Visser C. (2001),
Programmability of Intelligent Agent Avatars,
Proceedings of the Agent’01 Workshop on Embodied
Agents, June 2001, Montreal, Canada

[7] Eliëns A., Huang Z., Visser C. (2002), Presentational
VR – What is the secret of the slides?, in preparation

[8] Johnson A., Moher T., Cho Y-J., Lin Y.J., Haas D.,
and Kim J. (2002), Augmenting Elementary School
Education with VR, IEEE Computer Graphics and
Applications, March/April

[9] Broll W. (1996), VRML and the Web: A basis for
Multi-user Virtual Environments on the Internet. In
Proceedings of WebNet96, H. Maurer (ed.), AACE,
Charlottesville, VA (1996), 51-56.

[10] Tarau P. (1999), Jinni: Intelligent Mobile Agent
Programming at the Intersection of Java and Prolog,
Proc. of PAAM’99, London, UK, April, see also
http://www.binnetcorp.com/Jinni

[11] Davison A. (2001), Enhancing VRML97 Scripting,
Euromedia’2001, Valencia, Spain, April 18-20.
available from: http://fivedots.coe.psu.ac.th/∼ad

	Introduction
	Requirements
	The DLP+X3D platform
	Case studies
	Multi-user soccer
	Dialogs in Virtual Environments
	STEP -- a scripting language for embodied agents

	Evaluation criteria
	Related work
	Conclusions, future research
	REFERENCES

