
3D Agent-based Virtual Communities

Zhisheng Huang, Anton Eliëns and Cees Visser
Vrije University of Amsterdam

De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
{huang,eliens,ctv}@cs.vu.nl

Abstract

In this paper we propose an approach to 3D agent-based virtual communities, in
which autonomous agents are participants in VRML-based virtual worlds to enhance
the interaction with users or serve as intelligent navigation assistants. In addition,
an agent communication language (ACL) is designed as a high level communication
facility, in particular for the realization of shared objects in virtual communities. As
a typical example of 3D agent-based virtual communities, a VRML-based multi-user
soccer game has been developed and implemented in the distributed logic programming
language DLP. We discuss how DLP can be used for the implementation of 3D agent-
based virtual communities.
Key words: Distributed virtual environment, Virtual community, VRML, Agent

1 Introduction

3D virtual communities and in particular VRML-based multi-user virtual worlds, have been
adopted in a lot of application areas like 3D virtual conferencing [21], Web-based multi-user
games [18], on-line entertainment [2], and e-commerce [17]. Examples of popular 3D virtual
community servers are Active World [1] and Blaxxun Interactive [2]. However, most of them
do not provide support for intelligent agents. Enhancing virtual worlds with intelligent
agents would significantly improve the interaction with users as well as the capabilities of
networked virtual environments [3, 6, 23].

The Blaxxun community server does provide support for agents. Agents in the Blaxxun
community server may be programmed to have particular attributes and to react to events
in a particular way. As a remark, originally the Blaxxun agents were called bots. In our
opinion the functionality of Blaxxun agents does not surpass that of simple bots and we
consider the term agent to be a misnomer. Despite the large number of built-in events and
the rich repertoire of built-in actions, the Blaxxun agent platform in itself is rather limited in
functionality, because the event-action patterns are not powerful enough to program complex
behavior that requires maintaining information over a period of time.

In this paper we propose an approach to 3D agent-based virtual communities with the
following two shades of meaning :

1



• Virtual enviroments with embedded agents: autonomous agents are participants in vir-
tual communities. The main advantages are: the agent can be used to enhance the
interaction with users. For instance, in a multi-user soccer game it is usually hard
to find enough users to join the game at a particular moment. Autonomous agents
can serve as goal keepers or players whenever they are needed. Moreover, autonomous
agents always possess certain background knowledge about the virtual worlds. They
can serve as intelligent assistants for navigation or as masters to maintain certain
activities, like a referee in a soccer game.

• Virtual enviroments supported by ACL communication: Agent communication lan-
guages (ACL) are designed to provide a high-level communication facility. The com-
munication between the agents can be used for the realization of shared objects in
virtual worlds. For instance, in a soccer game, whenever an agent or user kicks the
soccer ball, the kicking message should be broadcast to all other agents and users. The
state of the soccer ball in the user’s local world can be updated after receiving the
message. Such a high-level communication facility can also be used to reduce mes-
sage delays, which are usually a bottleneck in networked virtual communities. We will
discuss performance related details in section 5.

Intelligent agents in VRML-based virtual worlds can be considered to be what we called
3D web agents in [11]. A VRML-based 3D soccer game with a single user has been developed
and implemented in [12], supported by the distributed logic programming language DLP
[7]. In this paper we discuss an example how DLP can be used for the implementation of
distributed multi-user soccer games by means of a 3D agent-based virtual community.

2 Agents in Virtual Communities

The term ”virtual community” is usually used to refer to the general appearance and gath-
ering of people by means of distributed computer systems, in particular on the Internet.
A typical text-based virtual community is Internet Relay Chatting [14], whereas typical
3D web-based virtual communities are VRML-based, like the Blaxxun community server
and DeepMatrix [19]. In VRML-based virtual communities, virtual worlds are designed by
means of VRML, whereas the VRML External Authoring Interface (EAI) is used to connect
autonomous agents running in a Web Browser to the plug-ins that are required to control
the virtual worlds. Virtual communities usually have a client-server network architecture.
In particular, they occasionally use a centralized server architecture, because the clients are
running in a remote Web Browser and the Java platform security policy allows clients only
to connect to the originating host.

The ”Living Worlds” Working Group describes a general concept and context of VRML-
based virtual communities [13]. A scene is used to refer to a set of VRML objects which is
geometrically bounded and is continuously navigable, i.e. without ”jumps”. A world consists
of one or more scenes linked together both from a technical and conceptual point of view. A
SharedObject is an object whose state and behavior are to be synchronized across multiple
clients. The SharedObject on one of these clients is called an instance of the SharedObject.
In ”Living Worlds” a pilot is used to refer to an instance of a SharedObject whose states

2



and behaviors are replicated by other instances, its drones. A drone is an instance of a
SharedObject replicating the state or behavior of another instance, its pilot.

In agent-based virtual communities, a shared object is designed to be controlled by an
agent. Therefore, a pilot agent is one which controls the states or behavior of a shared
object, whereas a drone agent is one which replicates the state of a shared object. Based
on the different types of shared objects, the agents can be further classified by means of the
following three types:

• object agents: an autonomous program controls a simple shared object, like a soccer
ball. Pilot object agents are usually located at the server side, whereas drone object
agents are usually located at the client side.

• user agents: an autonomous program which controls a user avatar; it translates com-
mands from users to messages for the communication between the agents. A pilot user
agent is located at the user or client side. Drone user agents can be located at the
server or other clients, however, they are usually not required as will be explained in
section 4.

• autonomous agents: an autonomous program with its own avatar which is able to
perform complex tasks, like an autonomous player in a soccer game. Pilot autonomous
agents are located at the server side, whereas drone autonomous agents are located at
all clients.

In addition, we also need multi-threaded, i.e. active components which are in charge
of several aspects of the communication infrastructure. However, we would not call them
agents, but active communication components, because agents are only interested in the col-
laboration with other agents rather than in particular aspects of the communication facilities
themselves.

A programming language supporting 3D agent-based virtual communities, as described
above, should have the following features:

• VRML EAI support: It should support VRML EAI, like Java does;

• Distributed communication capabilities: It should support network communication,
like TCP/IP;

• Multiple threads of control: It should support multiple threads of control for the
simulation of pilots and drones in both client and server sides;

• Declarative language: preferably, it should be a declarative language, like a logic pro-
gramming language, which supports rule-based knowledge representation as is often
necessary for the implementation of intelligent agents.

Based on the requirements above, the distributed logic programming language DLP has
been extended to support 3D agent-based virtual communities.

3



3 Distributed Logic Programming for Virtual Environ-

ments

Distributed logic programming [7] combines logic programming, object oriented program-
ming and parallelism. The use of DLP as a language for the implementation of agent-based
virtual communities is motivated by the following language characteristics: object-oriented
Prolog, VRML EAI extension, and distribution.

3.1 Object-oriented Logic Programming

DLP incorporates object-oriented programming concepts, which make it a useful tool for
programming. The language accepts the syntax and semantics of logic programming lan-
guages like Prolog. It is a high-level declarative language suitable for the construction of
distributed software architectures in the domain of artificial intelligence. In particular, it’s
a flexible language for rule-based knowledge representation [8].

In DLP, an object is designed as a set of rules and facts, which consists of a list of for-
mulas built from predicates and terms (variables or constants). For instance, a rule like

findHowtoReact(Agent,Ball, shooting) : −
getPosition(Agent,X, Y, Z), getPosition(Ball,Xb, Y b, Zb),
gatePosition(Agent,Xg, Y g, Zg), Distance(X,Y, Z,Xb, Y b, Zb,Distb),
Distance(X, Y, Z,Xg, Y g, Zg,Distg), Distb =< kickableDistance,
Distg =< kickableGoalDistance.

states that if the ball is kickable for the agent and the gate is within the kickable distance,
then the agent should try to shoot.

3.2 VRML EAI Extensions

DLP is an extensible language. Special-purpose requirements for particular application do-
mains can easily be integrated in the existing object-oriented language framework. DLP has
been extended with a run-time library for VRML EAI [16]. The following predicates are
some examples of DLP VRML built-ins:

• URL-load predicate loadURL(URL)
loads a VRML world at URL into the Web Browser.

• Get-position predicate getPosition(Object,X, Y, Z)
gets the position values 〈X,Y, Z〉 of the Object in the VRML world.

• Set-position predicate setPosition(Object,X, Y, Z)
sets the position values 〈X,Y, Z〉 of the Object in the VRML world.

• Get-property predicate getSFV ec3f(Object, F ield,X, Y, Z)
gets a value (which consists of three float numbers X,Y , and Z) of the Field of the Object.

• Set-property predicate setSFV ec3f(Object, F ield,X, Y, Z)
assigns the SFV ec3f value X,Y , and Z to the Field of the Object.

Furthermore, DLP programs are compiled to Java class files, which makes it a convenient
tool for the implementation of VRML EAI applets.

4



3.3 Distributed Programming Language

DLP is also a distributed programming language. DLP programs can be executed at different
computers in a distributed architecture.

The following predicates are some examples of TCP/IP networking primitives in DLP:

• Server predicate tcp server(ServerPort, ServerSocket) creates a server socket.

• Server accepting a new client: tcp accept(ServerSocket, ServerStreamIn, ServerStreamOut) cre-
ates a message input stream and a message output stream associated with the server socket.

• Client predicate tcp client(ServerHostName, ServerPort, T imeOut,
ClientStreamIn,ClientStreamOut) creates a message input stream and a message output stream,
connecting a client to a DLP server running at ”ServerHostName”.

• Bi-Directional Client / Server Communication predicates:
tcp get term(StreamIn, Term) gets a message term from the stream, and
tcp put term(StreamOut, Term) writes a message term to the stream.

Moreover, DLP allows for multiple threads of control in a single program, which makes
it a convenient tool for the implementation of autonomous agents.

4 Distributed Communication

In general, a virtual community based on a client-server network architecture works as
follows: all the client processes connect with a centralized server via a Web browser, usually
by means of a TCP connection. The server receives, processes, and transfers the messages
concerning shared objects to the clients for the necessary synchronization.

To improve the performance, multiple threads of control are introduced in both server
and clients in the virtual communities, as is shown in Figure 1. Each thread has its own
message queue to store incoming-messages (sent from other threads) which have not yet been
processed. Thus, sending a message to a thread means sending the message to the recipient’s
message queue. Each client has its own communication thread, called client thread, which
is in charge of the network communication. In addition, for each client a special thread
called server thread is created at the server side for the network communication with its
corresponding client thread. The introduction of multiple threads leads to the following
communication patterns:

• communication between internal threads: messages are sent from a thread to another
thread inside server or clients. This kind of communication is done directly, either in
a asynchronous or synchronous way, without the intervention of active communication
components.

• communication between threads across a network: messages are sent from a thread
located at the server to a thread located at a client or vice versa. Sending a message
from a thread located at the server to a thread located at a client has the following
procedure:

1. the message is sent to the corresponding server thread’s message queue;

2. the server thread retrieves the message from his message queue;

5



3. the server thread invokes tcp put term to put the message to the stream connected with the
client thread;

4. the client thread uses tcp get term to get the message from the stream;

5. the client thread stores the message in the destination thread’s message queue;

6. the destination thread retrieves the message from its own message queue.

• communication between two clients: messages are sent from a client thread to a thread
located at another client. Since there is no direct connection between two clients, this
kind of communication has to be achieved via the server.

The clients and server are designed to consist of two main components (Figure 1) : a general
component, called gg-server and gg-client, which deal with the network communication and
an application specific component, called wsserver and wsclient for the soccer game, which
deals with anything that is relevant for the application. Furthermore, the gg echo component
is used for the actual message broadcasting.

In agent-based virtual communities, each agent is represented as a thread. Considering
the high degree of autonomous behavior of user agents, we don’t need the drone user agent
at the server side and other client sides, which will become more clear in section 5.

For agent-based virtual communities, agent communication languages (ACL’s) are used
to serve as a high-level communication facility. KQML [9] and FIPA ACL [10], which are
based on speech act theory [20], are popular agent communication languages. A message
in an ACL usually consists of a communicative act, a sender name, a list of recipients, and
additional content. Communicative acts like ’tell’, ’ask’, and ’reply’, are used to identify the
communication actions which may change the mental attitudes of the agents. Moreover, a
set of agent interaction protocols based on ACL has to be defined to achieve interoperability
among the agents. Agents need not to take care of the details how the messages are passed
across the network, that is the responsibility of the active communication components.

5 Example: VRML-based Multiple User Soccer Game

We used the soccer game as one of the benchmark examples to test 3D agent-based virtual
communities for the following reasons:

• multiple users: Multiple human users can join the soccer game, so that a virtual
community is formed.

• multiple agents: Soccer games are multi-agent systems which require multiple au-
tonomous agents to participate in the games, in particular the goalkeepers are better
to be designed as autonomous agents, rather than human users, for their active areas
are rather limited, i.e. only around the goal gates. The goalkeeper agents can be
designed to never violate the rules of games.

• reactivity: A player (user or agent) has to react quickly in the game. Thus, it is not
allowed to have serious performance problems.

6



Figure 1: Communication among Multiple Threads in DLP

7



Figure 2: Screenshot of Soccer Game with Multiple Users

• cooperation/competition: Soccer games are typical competition games which require
the strong cooperation among team-mates. Therefore, intelligent behavior is a neces-
sity for agents.

• dynamic behavior: Sufficiently complex 3D scenes, including the dynamic behavior of
the ball.

A screenshot of the soccer game with multiple users is shown in Figure 2.
We consider two playing teams, red and blue, in the soccer game. Two goal keepers, a

soccer ball, and several agent players are designed to be pilot agents in the server. Whenever
a new user joins the game, a client thread is created for which a user avatar is created to be
the pilot agent in the client.

5.1 Agent players and their cognitive models

Each agent player may play one of the following four roles: goal keeper, defender, mid-fielder,
and forward. Each role has its own active area in the soccer field. Each agent player has
the following cognitive loop: sensing–thinking–acting. By sensing, agents use get-predicates
to retrieve the necessary information about the current situation. The main information
sources are: agent position, soccer ball position, and the goal gate position. In the stage of
thinking, avatars have to reason about other players’ positions or roles and decide how to
react based on their preferences and the information about the current situation. Thinking
results in a set of intentions, more exactly, a set of intended actions. By acting, agents use
the set-predicates to take the intended actions.

In the current version of the soccer game we do not require that agents know all the
rules of the soccer game, like penalty kick, free kick, corner kick, etc. In the simplified

8



soccer game, soccer players have several kick actions, like shooting, passing, run-to-ball,
move-around-default-position, etc.

The agents in the soccer game use a simplified cognitive model of soccer games [12]
in which the agents consider the information about several critical distances, then make a
decision to kick. Despite this simplified “cognitive” soccer game model, each player shows a
remarkably intelligent behavior [12].

5.2 Distributed Soccer Game Protocol

ACL is used to design a distributed soccer game protocol which states how the message
should be processed and forwarded among the agents to achieve shared objects. The messages
in the distributed soccer game protocol are a 3-tuple:

[Act, Type, ParameterList]

where Act is a communicative act; like ’tell’, ’ask’, ’register’ ; Type is a content type, like
’position’, ’rotation’, ’kick-ball’ ; ParameterList is a list of parameters for the content type.

The basic message formats for the distributed soccer game protocol are:

• register game: [register, game name, from(Host)].

• register accept: [tell, accept, user(Host,Name)].

• register wait: [tell, wait, []].

• new player: [tell, new player, user(Host,Name)].

• tell position: [tell, position, [user(Host,Name),position(X,Y,Z)]].

• tell rotation: [tell, rotation, [user(Host,Name),rotation(X,Y,Z,R)]].

• text chat: [tell, text, [user(Host,SenderName), RecipientNameList, Text]].

• text chat broadcast: [tell, text,[user(Host,SenderName), [all], Text]].

• kick ball: [tell, kick ball, [user(Host,Name),force(X,Y,Z)]].

• tell game score: [tell, game score, user(Host,Name)].

• ask game score: [ask, game score, user(Host,Name)].

• reply game score: [reply, game score, score(score1,score2)].

• unregister game: [unregister, game name, user(Host,Name)].

• reply unregister game: [reply, unregister, done(Host,Name)].

• player gone: [tell, player gone, user(Host,Name)].

The meaning of the message formats above are straightforward. For instance, the message
[tell,position,[host(swpc257,red10),position(0,0,10)]] states that the current position of player
red10 at host swpc257 is 〈0, 0, 10〉.

The distributed soccer game protocol for pilot agents are straightforward; they should
regularly tell their position and rotation to the communication components if the position or
rotation is changed, so that their information can be updated by their drones. Moreover, for
the player agents, if they kick the ball, the kicking message has to be passed to the server.

9



received message condition reply message broadcast

register game player name available register accept tell new player
register game player name not available register wait
tell position tell position
tell rotation tell rotation
tell kick legal kick tell kick
tell kick illegal kick
text chat recipient list text chat
text chat broadcast text chat
ask, game score reply game score
unregister game reply unregister player gone

Table 1: Distributed Soccer Game Protocol

The server decides which one is a legal kick and takes certain actions. Thus, the server
plays a central role for the synchronization between pilot and drone agents. The distributed
soccer game protocol for the server thread is a set of 4-tuples with the following format:
〈M,C,RM,B〉, which means that if Message M is received and Condition C holds, then
reply the message RM and broadcast the message B. The protocol is shown in table 1.

In theory, the protocol above is sufficiently expressive to realize shared objects in the
soccer game. However, in practice it results in several performance problems. Consider a
problem caused by autonomous player agents: players may continuously run to the ball or
other positions. If the players regularly send messages about their positions and rotations,
the message queues grow rapidly, which results in serious message delays. In a worst case
scenario, a user will never be able to kick a ball because its local world isn’t updated.

5.3 Performance Improvement

In order to improve the performance and decrease the message delays, new message formats
are required in the protocol so that the drone agents can simulate the behavior of their
counterpart pilot agents at a high level, i.e. the behavior can be computed locally. However,
note that the high level simulations are suitable only for autonomous agents and object
agents, for their pilots are controlled by DLP programs; their behaviors are to some extent
predicatable. Because of the high autonomy of the human users, user agents are usually
hard to be simulated at a high level. Thus, the high level message formats are used only for
autonomous player agents and objects agents.

One example of a high-level simulation is: if an agent wants to run to the position
〈X1, Y 1, Z1〉 from the initial position 〈X0, Y 0, Z0〉, then he sends a move-player message.
Other high level message formats are:

• run and trace: the payer runs and trace the ball until it can kick the ball.

• move ball: the ball is moving to a new position.

Introducing the high level message formats significantly reduces the message delays. As-
sume that in the game there are u users, a autonomous player agents, including object

10



agents. Compared to autonomous agents, human agents are relatively slow to change their
position or rotation. Assume also that each autonomous agent creates ma messages per sec-
ond and each human agent creates mu messages per second. There are M = a×ma+u×mu

message per second in total. That means that each communication thread has to process M
messages. If a communication thread is able to process Mc messages and Mc < M , then the
message queue length becomes t× (M −Mc) after time t. Now, suppose that introducing a
high-level message format f for which the average time period of the action is at(f) and the
probability is p(f). A single high-level message m with format f corresponds to at(f)×ma

messages for a period at(f). It reduces ma − 1/at(f) messages per second for a single oc-
currence of message m. In general, the reduced number of messages Mr(f) per second by
introducing f is as follows:

Mr(f) = (at(f)×M × p(f) + 1)/at(f)

The improved performance ratio R(f) is defined as:

R(f) = Mr(f)/M ≈ p(f)

The improved performance is mainly determined by the probability of the high-level mes-
sage. For example, if the average time period for the action move player is 4 seconds and the
probability is 0.15, the move player message results in a 15 percent performance improve-
ment.

6 Conclusions

The two main extensions to VRML97 are expected to be: multi-user interaction and au-
tonomous creatures [4]. In this paper we proposed an approach to 3D agent-based virtual
communities, which is an attempt to provide a general framework to deal with these two
issues at a VRML EAI level. Virtual environments embedded with intelligent agents of-
fer a general solution to shared objects and autonomous creatures in VRML worlds. The
interaction supported by agent communication languages provides a high-level multi-user
interaction in virtual environments. We have developed and implemented a VRML-based
multi-user soccer game, which illustrates that the Distributed Logic Programming language
(DLP) is a high level tool for the development of 3D agent-based virtual communities.

References

[1] ActiveWorlds, http://www.activeworlds.com.

[2] Blaxxun Interactive Inc. http://www.blaxxun.com.

[3] W. Broll, E. Meier, and T. Schardt, Symbolic Avatars Acting in Shared Virtual Envi-
ronments, http://orgwis.gmd.de/projects/VR, 2000.

[4] G. Carson, R. Puk, and R. Carey, Developing the VRML 97 International Standard,
IEEE Computer Graphics and Applications 19(2), 1999, 52-58.

11



[5] DLP web site: http://www.cs.vu.nl/∼eliens/ projects/logic/index.html.

[6] R. Earnshaw, N. Magnenat-Thalmann, D. Terzopoulos, and D. Thalmann, Computer
Animation for Virtual Humans, IEEE Computer Graphics and Applications 18(5), 1998,
24-31.

[7] Anton Eliëns, DLP, A Language for Distributed Logic Programming, Wiley, 1992.

[8] Eliëns, A., Principles of Object-Oriented Software Development, Addison-Wesley, 2000.

[9] T. Finin and R. Fritzson, KQML as an agent communication language, Proceedings of
the 3rd International Conference on Information and Knowledge Management, 1994.

[10] FIPA web site:http://www.fipa.org.

[11] Z. Huang, A. Eliëns, A. van Ballegooij, P. de Bra, A Taxonomy of Web Agents, Proceed-
ings of the 11th International Workshop on Database and Expert Systems Applications,
IEEE Computer Society, 765–769, 2000.

[12] Z. Huang, A. Eliëns, and C. Visser, Programmability of Inteligent Agent Avatars,
Proceedings of the Autonomous Agents’01 Workshop on Embodied Agents, Montreal,
Canada, 2001.

[13] Living Worlds Working Group, http://www.web3d.org/WorkingGroups/living-worlds/.

[14] Z. Liu, Virtual Community Presence in Internet Relay Chatting, Computer-Mediated
Communication 5(1), 1999.

[15] ISO, VRML97: The Virtual Reality Modeling Language, Part 1: Functional specification
and UTF-8 encoding, ISO/IEC 14772-1, 1997.

[16] ISO, VRML97: The Virtual Reality Modeling Language, Part 2: External authoring
interface, ISO/IEC 14772-2, 1997.

[17] E. Messmer, E-commerce yet to embrace virtual reality,
http://www.idg.net/english/crd commerce 441283.html

[18] MiMaze, http://www-sop.inria.fr/rodeo/MiMaze/

[19] G. Reitmayr, S. Carroll, and A. Reitemeyer, DeepMatrix – An Open Technology Based
Virtual Environment System, Visual Computer 15, 395-412, 1999.

[20] J. R. Searle, Speech Acts. An Essay in the Philosophy of Language. Cambridge, 1969.

[21] Virtual European Statistical Lab, Conferencing using Vnet,
http://vesl.jrc.it/en/comm/eurostat/research/supcom.97/01/conf/mainvnet.htm.

[22] WASP project home page: http://wasp.cs.vu.nl/wasp.

[23] M. Watson, AI Agents in Virtual Reality Worlds – programming intelligent VR in C++,
Wiley, 1996.

12


