
Proceedings of the 2006 Winter Simulation Conference

L. F. Perrone, F. P. Wieland, J. Liu, B. G. Lawson, D. M. Nicol, and R. M. Fujimoto, eds.

CONTROLLING SIMULATION GAMES THROUGH RULE-BASED SCENARIOS

Stijn-Pieter van Houten

Alexander Verbraeck

Section of Systems Engineering

Delft University of Technology

Delft, THE NETHERLANDS
ABSTRACT

In this paper we present a framework for scenarios in sim-

ulation games. It is used to support developing, using, and

managing complex and dynamic simulation games, and it

supports the achievement of the game’s learning goal. Espe-

cially game facilitation is increasingly challenging due to the

nature of these simulation games. The framework consists

of a number of conditions, rules and actions, based on the

concept of production systems from artificial intelligence,

and it is presented as a component of Zeigler’s experimental

frame. This has been successfully used in the Distributor

Game, which is the first of a series of management games

developed for today’s supply chain management challenges.

Further research will focus on the extension of the set of

conditions, rules and actions, and on visualizing and man-

aging the interdependencies between the simulation game,

its scenario, and the players.

1 INTRODUCTION

Within simulation games, we see a tendency to develop

increasingly complex and dynamic simulation games to

stimulate the creation of awareness of and training for

real-world systems (Chiesl 1990, Dasgupta 2003, Gold and

Pray 2001, Lainema and Makkonen 2003). These games

may be used to support the exploration of a variety of

decision making strategies. From a modeling and game play

perspective, in these games, more interdependencies need to

be modeled, which may lead to unexpected (and unwanted)

behavior of the model during game play. Furthermore,

modern simulation games are often continuous, as opposed

to batch-based games, leading to more dynamic simulation

games, which are more difficult to model and to manage.

In order to confront the player with a number of situa-

tions that are important to reach the learning goal, scenarios

are often used that create the right state of the model at

the right moment under the right conditions (Magerko and
22611-4244-0501-7/06/$20.00 ©2006 IEEE
Laird 2002). A scenario consists of a set of predefined

events that occur during game play. From a modeling per-

spective, a scenario does not seem much different from an

experimental design. It involves setting the parameters on

the computer-controlled parts of a simulation model, which

in case of a simulation game also happens to have humans

inside the model. When the desired state of the simulation

game does not occur, a game facilitator usually intervenes

and undertakes some kind of actions, for example the ex-

ecution of some additional events, to achieve the desired

state of the model.

Based on our experience with 4 game sessions for

supply chain management, with a total of 120 (Executive)

MBA students, we observed that the development and usage

of scenarios for simulation games can be improved on a

number of points. The first point deals with ensuring that a

proposed effect, i.e. the goal of the scenario, does take place.

Making sure, for example, that the bullwhip effect occurs

is already difficult enough. Games designed for this effect,

such as the Beer Game (Sterman 1989), typically involve a

four-stage supply chain, have a limited number of players

and have limited interaction. Furthermore, these games are

often batch-based. The type of simulation games we develop

and use vary in the number of players (for example 12 - 40

players) and have a large number of computer-controlled

supply chain actors (> 100) (van Houten et al. 2005).

This leads to an increase of the (unpredictable) interaction

between players and an increase in the complexity due to

the larger number of actors in the simulation game. Hence,

the design of scenarios becomes far from trivial. Secondly,

we see that due to the continuous character of our games,

and the increased complexity, it becomes very difficult for

a game facilitator to manage a game at a certain moment of

time and to predict over time the effects of actions that are

executed. Thirdly, given that these games may be played

over a long period of time, for example many days or even

a whole semester, and in a globally distributed setting, the

management of these games by a game facilitator and the

introduction of interventions becomes unfeasible.



van Houten and Verbraeck
In this paper we present a framework that supports the

development and usage of scenarios and hence supports

simulation games. In Section 2 we present background

information with regards to scenarios, based on the concept

of production systems from artificial intelligence. Section 3

places the scenario framework into Zeigler’s framework for

modeling and simulation (Zeigler, Praehofer and Kim 2000).

Measuring the effectiveness of a framework for scenarios

is presented in more detail in Section 4. We describe and

illustrate the framework in Section 5. In Section 6 we give

our proof of concept by illustrating how the framework has

been applied in the Distributor Game, which is a game

developed for teaching supply chain management concepts

for global supply chains (van Houten et al. 2005). We

conclude this paper with conclusions and directions for

further research.

2 RULE-BASED SCENARIOS

In simulation games, the term “scenario” is often used, al-

though the term is rarely defined. Scenarios usually describe

the context in which the game takes place, the desired de-

velopment of the game over time, and some events that take

place during game play to enhance the learning. Scenario’s

can therefore be seen as a scheme for game play, or as a

script.

The term “scenario” was taken from theatrical studies,

later the concept was introduced into research on military and

strategic gaming (Jarke, Bui, and Carroll 1998). Nowadays,

this term appears in in a wide number of fields, ranging

from software and system engineering to human computer

interaction. Many definitions of a scenario exist (Nardi

1992), however, here we choose to follow the definition of

a goal-based scenario given by Schank et al. (1993), given

its appropriateness for simulation games. They describe

goal-based scenarios as comprising a clear, concrete goal

to be achieved, a set of target skills to be learned and

practiced in the service of this goal and a task environment

in which to work. Goal-based scenarios are especially

appropriate for generating an understanding of complex

systems. They allow decision makers systematically to refine

their understanding and intuition of system behavior through

exploration and iterative experimentation. By iteratively

making decisions, observing the effects of their decisions,

and refining those decisions, decision makers develop an

intuition for how the system under investigation behaves

and how to diagnose and optimize their real-world systems.

We see that a scenario as such is a description of a complex

future situation, of which the occurrence cannot be predicted

for sure. Nor can we formulate the path that could lead

from the present to the desired future state of the system

(Gausemeier, Fink, and Schlake 1996).

The most important condition for success in the use of

educational simulation games is that the teaching objectives
226
are met. This is not always easy, because players have

a certain freedom, and their actions in the game can not

always be predicted. Therefore, games almost always have a

game facilitator, who takes actions when the game execution

deviates from its intended path (Hall 1994). The concept

of taking corrective actions towards a certain goal links

perfectly with the definition of a scenario as presented

above. When simulation games get more complex, when

more players participate in a game, and when players play

from different locations, facilitation quickly becomes more

difficult. One of the solutions might be to automate some

of the (problem solving) tasks of a game facilitator.

Artificial intelligence literature shows the value of pro-

duction systems (Newell and Simon 1972, Rich 1983, Win-

ston 1984) for mimicking human problem solving behavior.

Rich (1983) defines a production system as a set of rules,

each containing a left hand side that represents the appli-

cability of the rule, a condition or a pattern, and a right

hand side that describes the action to be performed if the

rule is applied. In addition, a production system contains

a database with information appropriate for the particular

task. Finally, a control strategy is needed that describes the

order in which the rules will be compared to the database

and a way of resolving conflicts when more than one rule

matches at the same time. Winston (1984) extends the

database concept with a working memory as we also see

it in blackboard systems (Engelmore and Morgan 1988),

where production rules can also write new information into

memory, and where unused information slowly ages until

it is discarded for further use. Production systems can be

used for plain actions, if rule applies, carry out action; for

problem solving, if problem occurs, search for action that

makes the problem go away; and for goal satisfaction, see

how a desired state can be used from the current state using

the production rules. A simulation game can benefit from

all these forms of behavior, and the state of the simula-

tion model shows a neat correspondence to the ‘database’

or ‘memory’ that is needed for the left hand side of the

production rules.

To illustrate the concept, let us look at a few common

issues that a game facilitator might encounter during game

play, and the production rules that can help address them.

• Example 1: In a supply chain management game,

one of the player teams makes the mistake of

buying too many materials, which cannot be sold.

The team gets into financial trouble, and cannot

continue to play. Clearly, it is not in the interest of

the teaching purpose of the game to disallow this

team to continue. A game facilitator interferes,

for instance by granting a loan. When the game

is played with hundreds of players in different

locations, the request to automate this task becomes
2



van Houten and Verbraeck
clear. The rule that would apply here looks as

follows:

player.bankaccount < 10000 →

player.bankaccount += 50000

• Example 2: The “script” of a supply chain manage-

ment game prescribes that after 2 months of game

play, i.e. game time, not clock time, prices of the

products “Desktop” and “Laptop” should increase

by 10%. Normally, the game facilitator should

continuously watch the clock during the game, to

initiate the right actions at the right time, and often

these interventions are forgotten or executed too

late. When automating this task, the rule would

look as follows:

gametime == 2 months →

laptop.price *= 1.1

desktop.price *= 1.1

• Example 3: When we execute the task of example

2, we would also like to inform the players that

a price increase has taken place, enabling them to

adapt their strategies and reach one of the teaching

goals as a result:

gametime == 2 months →

sendmessage("Important

message:

Prices of Laptops and

Desktops increase by 10%")

• Example 4: During the run of a supply chain

management game, the game facilitator finds out

that there is a risk that the learning goal can not be

met, because the customer market is not big enough

to sustain the number of players. Increasing the

demands of the customers would be an option here.

However, the market should also not get too big,

as this would make it too easy on the players. The

rule could look as follows, looking at the average

monthly profit for each player, and increasing or

decreasing the market when the average profit is

not between 5000 and 15000:

average(player.monthlyprofit) < 5000

→

market.demand(desktop) *= 1.1

market.demand(laptop) *= 1.1

average(player.monthlyprofit) > 15000

→

market.demand(desktop) *= 0.9

market.demand(laptop) *= 0.9

For many games, there might be hundreds of potential

interventions for a game facilitator. With a growing num-
226
ber of players in the simulation game, it becomes almost

impossible to look at all potential variables for intervention.

A clear, automated scenario shifts some of the interventions

to the scenario, and can help the game facilitator to reach

the teaching objectives more easily.

3 SCENARIOS AND THE EXPERIMENTAL

FRAME

A simulation game can be viewed as a special type of sim-

ulation model, where some of the actions in the model are

executed by human players. As the execution of the simu-

lation model is influenced by the game facilitator and by the

scenario, we can view the scenario and the game facilitator

as a part of the experimental frame as described by Zeigler,

Praehofer, and Kim (2002). Davis and Anderson (2003,

p.77) regard the experimental frame as a system in itself,

which interacts with the simulation, the real-world system,

and possibly other simulations. Specifying an experimental

frame includes the way in which users, in our case the game

facilitator, will operate on output data to generate whatever

they actually need for their applications. The relation be-

tween the simulation model, simulator, experimental frame,

players, scenario, and the game facilitator is illustrated in

Figure 1.

We consider two types of input in this particular case.

The first type is a collection of data, control conditions,

and initialization conditions for a simulation model (Zeigler,

Praehofer, and Kim 2002). The scenario is partly included

in this type of input since it contains the initial state of a

simulation model, for example a number of initial events

for the event list. The second type of input is provided by

a game facilitator. During game play, a game facilitator

provides input to the simulation model using interventions.

The output of a simulation model is sent to an experimental

frame and may be collected for analysis by a game facilitator.

Having made clear where a scenario is positioned with

regards to a simulation model and the kind of input and

output related to a scenario, in the next section we present

how to measure the effectiveness of our framework.

4 EFFECTIVENESS OF A FRAMEWORK FOR

SCENARIOS

The effectiveness of a scenario framework can be described

in terms of the usefulness of the framework, for example

the value that it adds to the goal of supporting simulation

games, the usability, for example the mesh between users,

players and a game facilitator, processes and technology,

and the usage, for example its flexibility, its adaptivity and

its suitability to the context of a simulation game (Keen

and Sol 2006). Furthermore, we consider the different

activities and roles, for example a developer or a game
3



van Houten and Verbraeck
Simulator

Simulation

Model

Experimental Frame

Scenario

game

facilitator

players

Figure 1: Relations Between Experimental Frame, Players, Game Facilitator and Scenario (Based on the Framework from

Zeigler, Praehofer, and Kim 2002)
facilitator, involved in these activities while developing and

using scenarios for simulation games.

• Usefulness: The first item related to effectiveness is

that of providing a credible simulation game context

to players. The framework should support this

credibility in terms of complexity and dynamics.

Furthermore, the framework should support players

making decisions on their own (Magerko and Laird

2002, Thorsteinsson 1998) to further increase the

credibility of a simulation game. This means that

the framework should allow players to come up

with their own strategies and explore them as they

would in the real-world, without however disrupting

a simulation game to the extent that it becomes

unstable.

• Usability: To leverage a game facilitator in man-

aging a simulation game, the framework should

include scenarios that are able to make decisions

based on predefined measures. Furthermore, the

framework should enable visualization and man-

agement of the interdependencies of a scenario, to

support scenario development.

• Usage: The framework should be adaptive in the

sense that it should support the achievement of a

goal during game play. When a certain desired

state does not occur, the framework should be

able to adapt the state of the simulation game, for

example by adding events to the event list or by
2264
changing attribute values of other objects. The

framework can measure these effects since it is

able to analyze the output of a simulation model

(see Figure 1). The framework should be suitable

for different types of simulation games. It should

support games focusing on application domains

other than that of simulation games for supply

chain management as done in this research.

5 A FRAMEWORK TO SUPPORT SCENARIOS

FOR SIMULATION GAMES

The framework we have developed is based on the Java

based simulation suite called DSOL (Jacobs 2005), which is

based on the event scheduling paradigm and uses a publish-

subscribe mechanism to broadcast state changes of objects.

We present an overview of the framework in Figure 3. We

start with describing the abstract classes and interfaces of

the framework, which form the basis. We continue with

describing how these classes, and classes extending the base

classes, address the requirements for the effectiveness of a

scenario framework as described above.

• AbstractScenario: This class is a placeholder

for all the objects and methods related to a sce-

nario. It contains a reference to the conditions part

of a scenario and a reference to the simulator that

is used while playing a simulation game. Classes

extending the AbstractScenario must imple-



van Houten and Verbraeck
ment code for parsing events into classes extend-

ing the AbstractCondition, i.e. a scenario

class must implement the parseConditions()

method.

• AbstractCondition: This class requires that

conditions extending it execute a rule when a

certain condition is met. Examples of condi-

tions are the PublishSubscribeCondition

and the RepeatedCondition. When the re-

turn value of the rule is ‘true’, a set of ac-

tions is executed. The default implementation of

the AbstractCondtion has a DefaultRule

which always returns true when checked.

• RuleInterface and CompareRule: The in-

terface requires every rule to implement the

check() method, which is invoked when a cer-

tain condition is met. An example of a rule is

the CompareRule, which provides some basic

functionality for comparing two objects with each

other based on six different compare types. If a

rule is satisfied, a set of actions is executed.

• ActionInterface and AbstractAction:

An action is executed when a rule is checked and

the return value is ‘true’. Each action has a method

called execute(), which is required according

to the ActionInterface. An example of an

action is one that upon execution adjusts the value

of an attribute of type Number, for example a

Double.

In what way does this framework support simulation

games? First of all, a scenario contains a list of predefined

events, which are executed once at the moment the clock of

the simulation game reaches a certain value. An example

is given in Section 2, where Example 2 contains an event

that should be executed after 2 months of game play. These

conditions are of a type called TimedOnceCondition.

The execution of the predefined event is not different from the

execution of a normal simulation event in DSOL, where the

method of a certain object is invoked at the simulation time

of the event. The list of predefined events supports a certain

development of the game, that leads players from the present

to the future state of the system (Gausemeier, Fink, and

Schlake 1996) and it helps in showing the purpose (Jarke,

Bui, and Carroll 1998) of the scenario. When carefully

designed, such a list of events adds to the credibility of a

simulation game.

Secondly, players should be able to explore a variety of

strategies. Using a set of conditions, in combination with

rules and actions, to analyze the output of a simulation game,

the input of a simulation game may be adjusted to keep

certain values of state variables within a desired bandwidth.

This supports the overall stability of a simulation game. One
22
of the functions of indicating a bandwidth is to prevent a

player from being able to disrupt a whole simulation game.

We use the following piece of code to illustrate how the

management of a simulation game is leveraged by helping

players who got bankrupt (see Example 1 in Section 2).

//construct the action

AdjustNumberFieldAction action1 =

new AdjustNumberFieldAction(

manufacturer.getBankAccount(),

"balance", ADJUSTMENT_TYPE.INCREASE,

50000);

//construct the condition

new PublishSubscribeCondition(

new ActionInterface[] { action1 },

BankAccount.BANK_ACCOUNT_CHANGED_EVENT,

manufacturer.getBankAccount(),

new FieldConstantRule(manufacturer.

getBankAccount(), "balance",

CompareType.LT, new Double(-10000)));

It shows that when the value of a BankAccount of

a manufacturer is less than -10000, its value is increased

by 50000. One might view this as an interest free loan. To

accomplish this, a PublishSubscribeCondition is

used that subscribes itself to BANK_ACCOUNT_CHANGED

events. Using this kind of conditions, a game facilitator is

supported, since a lot of the interventions a game facilitator

normally does, are done automatically by the framework.

Another way to support a game facilitator in presumably

better managing a simulation game is to notify a game

facilitator when an intervention is needed, for example by

a NotifyAction. A game facilitator can then decide

what to do. With automated publish / subscribe actions that

continuously monitor the value of certain state variables,

the game facilitator does not need continiously to check the

state of a simulation game. Supporting a game facilitator by

decreasing its interaction with a simulation game increases

its validity. The validity of a simulation game increases

when less, often unpredictable and difficult to repeat, game

facilitator initiated interactions take place with it. However,

the added value of this needs to compared to the amount

of interaction that takes place between players and the

simulation model.

Support by the framework to achieve a goal of a sim-

ulation game is illustrated by the following piece of code:

Product[] products = Products.

resolveProduct("Laptop");

// construct the condition for period

// of 15-100 days, market share should

// be below threshold

new RepeatedCondition(new ActionInterface[]

{

65



van Houten and Verbraeck
new AdjustCapacityAction(markets,

products, true, 10.0),

new AdjustPriceAction(manufacturers,

products, true, 20.0) },

/* the rule */

new RegionMarketShareRule(this.simulator,

15, 100, 30, true,

RegionInterface.Util.getPredefinedRegions(),

RegionInterface.ASIAN_REGION, products,

StatisticsStoreInterface.actorType.

MANUFACTURER), 5, TimeUnitInterface.DAY,

this.simulator);

The above piece of code illustrates how we are able to

control the development of market shares in a simulation

game for supply chain management. The RegionMarket-

ShareRule was specified specifically for the supply chain

management games we are building. It states that there

is a RepeatedCondition with two Actions and one

Rule. It controls the market share of manufacturers in the

Asian region for Laptops. In the period of 15 - 100 days,

this market share should not be higher than 30%. The value

for the market share is checked against this threshold every

5 days. If the market share exceeds this threshold, the two

actions are executed, resulting in an increasing demand from

the markets in the Asian region for Laptops, and an increase

in the price that manufacturers ask for their Laptops.

To increase the usability of the scenario framework,

we use it in the coding of the model, and as input for the

simulation game in XML format, which will be illustrated in

the next section. The requirement with respect to visualizing

the various interdependencies that are part of a scenario is

not yet supported by this framework. Further research is

required here.

6 PROOF OF CONCEPT

The framework has been tested in the Distributor Game, a

game developed for supply chain management issues cen-

tered around globalization (Houten et al. 2005). To support

the teaching of globalization issues, the world has been

divided into three regions: the U.S., Europe, and Asia, each

with a number of suppliers, manufacturers, player-controlled

distributors and markets. The products are consumer elec-

tronics such as Desktops, Laptops, etc. In each region,

local and global markets are present. The global markets

support global demand. The scenario we have played a

number of times in real classes, focuses on a demand surge

for Laptops and a shrinking demand for Desktops in the

Asian region. The manufacturers in the Asian region are

modeled in such a way that they can not meet the increased

demand of the distributors. Hence, a shift in demand from

Asian distributors to manufacturers in the European region

is expected. If a player team recognizes this shift on time,

for example via news messages, or by observing the right
226
statistics, the team can anticipate and gain a competitive

advantage over its competitors.

The initial set of events we use consist of a number of

events as shown by the piece of XML code below. This

event contains the information that at a certain time, the

demand by the ASIAN market for the product Desktop

is decreased by 25 percent, analogous to Example 2 in

Section 2. Similar events were specified for other markets

in the Asian region.

<startTime>2005-06-15T00:00:00</startTime>

<marketEvent>

<market>ASIAN MKT</market>

<changeDemand>

<product>Desktop</product>

<increase>false</increase>

<percentage>25</percentage>

</changeDemand>

</marketEvent>

In combination with these events, we used news

messages, see Example 3 in Section 2, that are also parsed

into TimedOnceConditions. A news message is sent

to players two weeks before the actual changes take place.

This provides players with the opportunity to adapt their

strategies and reconsider their relations with other supply

chain actors. Similar events are used to adjust the demand

for other consumer electronics products.

<startTime>2005-05-30T00:00:00</startTime>

<NewsMessageEvent>

<subject>Desktop sales fall

</subject>

<content>With the rising mobility of

computer users... but the economy is

slowly recovering.</content>

</NewsMessageEvent>

To make sure that the Asian distributors shift their de-

mand to European manufacturers, a number of conditions

are modeled that monitor the demand pattern of the Asian

distributors. These conditions take into account when the

demand pattern are supposed to shift. At the given time, and

at intervals afterwards, rules are checked to see whether the

shift took place, see Example 4 in Section 2. If not, actions

are executed that increase the price that Asian manufactur-

ers ask for their Laptops, and that increase the demand of

the Asian market. This continues until a specified thresh-

old is reached. We show the actual development of the

market share for Laptops of manufacturers in the Asian

region in Figure 2. The MarketShareRule as illus-

trated in the previous section became active after 15 days,

and managed the market share until a threshold of 30%

was reached. The point in time where the influence of the
6



van Houten and Verbraeck

Figure 2: Development of the Market Share for Manufacturers for Laptops
MarketShareRule became noticeable is indicated by

the dotted lines.

To leverage a game facilitator, conditions are used to

monitor the financial status of supply chain actors, not only

the players, in the simulation game. If necessary, loans are

granted, and the actions are logged for debriefing.

From a modeling perspective, using XML files to rep-

resent the scenario worked well. However, coding the

conditions, rules and actions, especially those that monitor

the demand patterns proved to be a challenging task. Fur-

thermore, it is not trivial to manage the interdependencies

between the events. From a game facilitator perspective,

the framework leverages the management tasks consider-

ably. The framework monitors the execution of the scenario,

and adjusts the financial state of the actors when necessary.

When comparing playing games without scenarios and with

scenarios, facilitation is much easier when using the sce-

narios that are based on our framework.

7 CONCLUSIONS

Simulation games are getting more complex and dynamic

to better mimick today’s systems, such as global supply

chains. Hence, the development, usage and management
226
of these games is becoming more challenging and difficult.

In this paper we present a framework that supports the

development, usage and management of simulation games

through rule-based scenarios. The framework is based on

the concept of production systems drawn from the domain of

artifical intelligence, and consists of a number of conditions,

(goal-based) rules and actions.

The framework eases the design of a scenario, supports a

game facilitator during game play by decreasing the number

of needed interventions, it supports achievement of the

learning goal(s) of a simulation game, and it enhances the

credibility of a simulation game. The latter is supported

by providing players with the freedom to explore a variety

of strategies without jeopardizing the scenario, its learning

goal(s) and the stability of a simulation game.

Several topics can be addressed in future research. The

first topic concerns the visualization and the management of

interdependencies between the several parts of a scenario

that are supported by the framework. For example the

interdependencies between the predefined list of events for

the initial state of a simulation game and the interventons

during game play. A second topic is the development of

a generic set of conditions, rules and actions suitable for

supply chain management games, since the framework is
7



van Houten and Verbraeck
currently used in these type of games. A third topic is to

research to what extent agent-based frameworks, such as

the Belief-Desire-Intention framework (Rao and Georgeff

1995), can contribute to developing and using scenarios, and

hence our framework. Agent-based frameworks often have

functionalities for goal-based behavior, are based on rules,

and have the ability to be used to measure the effectiveness

over time of decisions made.

REFERENCES

Chiesl, N. E. 1990. Interactive real time simulation. In

Guide to business gaming and experiential learning,

ed. J. W. Gentry, 141–158. East Brunswick: Nichols/GP

Publishing.

Dasgupta, S. 2003. Guest editorial: Internet-mediated sim-

ulation and gaming. Simulation & Gaming: An Inter-

disciplinary Journal 34(1):8–9.

Davis, P. K., and R. H. Anderson. 2003. Improving the

composability of department of defense models and

simulations. Report MG-101. Santa Monica: The

RAND Corporation.

Engelmore, R., and T. Morgan (Eds.). 1988. Blackboard

systems. Reading: Addison-Wesley.

Gausemeier, J., A. Fink, and O. Schlake. 1996. Scenario-

management: planning and leading with scenarios. Fu-

tures Research Quarterly 12(3).

Gold, S. C., and T. F. Pray. 2001. Historical review of

algorithm development for computerized business sim-

ulations. Simulation & Gaming: An Interdisciplinary

Journal 32(1):66–84.

Hall, J. 1994. Computerized tutor support systems: the

tutor’s role, needs and tasks. In The Simulation and

Gaming Yearbook, Volume 2, ed. R. Armstrong, F.

Percival, and D. Smulders. Chapter 26. Kogan Page

Limited.

Jacobs, P. H. M. 2005. The DSOL simulation suite. Enabling

multi-formalism modeling in a distributed context. PhD

thesis, Delft University of Technology, Delft.

Jarke, M., X. T. Bui, and J. M. Carroll. 1998. Scenario man-

agement - an interdisciplinary approach. Requirements

Engineering Journal 3(3-4):155–173.

Keen, P. W. G., and H. G. and Sol. 2006. Rehearsing the

future. To appear.

Lainema, T., and P. Makkonen. 2003. Applying construc-

tivist approach to eduational business games: Case

REALGAME. Simulation & Gaming: An Interdisci-

plinary Journal 34(1):131–149.

Magerko, B., and J. Laird. 2002. Towards building an inter-

active, scenario-based training simulator. In Proceed-

ings of the Behavior and Representation and Computer

Generated Forces Conference.
226
Nardi, B. A. 1992. The use of scenarios in design. Spe-

cial Interest Group on Human Computer Interaction

(SIGCHI) Bulletin 24(4):13–14. ACM Press.

Newell, A. and H. A. Simon. 1972. Human problem solving.

Englewood Cliffs: Prentice-Hall.

Rao, A. S., and M. P. Georgeff. 1995. BDI agents: from

theory to practice. In Proceedings of the First Interna-

tional Conference on Multi-Agent Systems, 312–319.

Rich, E. 1983. Artificial intelligence. Singapore: McGraw-

Hill.

Schank, R. C., A. Fano, B. L. Bell, and M. Y. Jonea. 1993.

The design of goal based scenarios. The Journal of the

Learning Sciences 3(4):305–345.

van Houten, S. P. A., A. Verbraeck, S. Boyson, and T. Corsi.

2005. Training for today’s supply chains: an introduc-

tion to the distributor game. In Proceedings of the 2005

Winter Simulation Conference, ed. M. E. Kuhl, N. M.

Steiger, F. B. Armstrong, and J. A. Joines, 2338–2345.

Available online via <http://www.informs-cs.

org/wsc05papers/293.pdf> [accessed January

05, 2006].

Thorsteinsson, U. 1998. Computer games versus experi-

ments. In Games in operations management, ed. J. Riis,

R. Smeds, and R. van Landeghem, 35–46. Dordrecht:

IFIP / Kluwer Academic Publishers.

Winston, P. H. 1984. Artificial intelligence. 2nd ed. Read-

ing: Addison-Wesley.

Zeigler, B., H. Praehofer, and T. Kim. 2002. Theory

of modeling and simulation. 2nd ed. San Diego:

Academic Press.

AUTHOR BIOGRAPHIES

STIJN-PIETER VAN HOUTEN is a Ph.D. student at

Delft University of Technology. His research is focused

on services for decision support environments, specializ-

ing in interactive distributed simulation. His e-mail ad-

dress is<s.p.a.vanhouten@tbm.tudelft.nl> and

his web page is <www.tbm.tudelft.nl/webstaf/

stijnh>.

ALEXANDER VERBRAECK is an associate professor in

the Systems Engineering Group of the Faculty of Technol-

ogy, Policy and Management of Delft University of Technol-

ogy, and a part-time full professor in supply chain manage-

ment at the R.H. Smith School of Business of the University

of Maryland. He is a specialist in discrete event simulation

for real-time control of complex transportation systems and

for modeling business systems. His current research focus

is on development of generic libraries of object oriented

simulation building blocks in C++ and Java. His e-mail

address is <a.verbraeck@tbm.tudelft.nl>, and

his web page is <www.tbm.tudelft.nl/webstaf/

alexandv>.
8



van Houten and Verbraeck
Figure 3: An Overview of the Framework for Scenarios
2269


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search
	Next Document
	Next Result
	Previous Result
	Previous Document

	Print



