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Objective: Statistical models, such as linear or logistic regression or survival analysis, are frequently used as a means to answer
scientific questions in psychosomatic research. Many who use these techniques, however, apparently fail to appreciate fully the
problem of overfitting, ie, capitalizing on the idiosyncrasies of the sample at hand. Overfitted models will fail to replicate in future
samples, thus creating considerable uncertainty about the scientific merit of the finding. The present article is a nontechnical
discussion of the concept of overfitting and is intended to be accessible to readers with varying levels of statistical expertise. The
notion of overfitting is presented in terms of asking too much from the available data. Given a certain number of observations in
a data set, there is an upper limit to the complexity of the model that can be derived with any acceptable degree of uncertainty.
Complexity arises as a function of the number of degrees of freedom expended (the number of predictors including complex terms
such as interactions and nonlinear terms) against the same data set during any stage of the data analysis. Theoretical and empirical
evidence—with a special focus on the results of computer simulation studies—is presented to demonstrate the practical conse-
quences of overfitting with respect to scientific inference. Three common practices—automated variable selection, pretesting of
candidate predictors, and dichotomization of continuous variables—are shown to pose a considerable risk for spurious findings in
models. The dilemma between overfitting and exploring candidate confounders is also discussed. Alternative means of guarding
against overfitting are discussed, including variable aggregation and the fixing of coefficients a priori. Techniques that account and
correct for complexity, including shrinkage and penalization, also are introduced. Key words: statistical models, regression,
simulation, dichotomization, overfitting.

ANOVA � analysis of variance.

INTRODUCTION

In science, we seek to balance curiosity with skepticism. On
one hand, to make discoveries and advance our knowledge,

we must imagine and consider novel findings and ideas of all
kinds. In the end, however, we also must subject those results
to stringent tests, such as replication, to make sure that chance
has not fooled us yet again (1). Modern data analytic methods
such as multivariable regression models reflect these opposing
processes quite well. We build models that we hope or imag-
ine will reveal some significant scientific truth, but ultimately,
because they are derived from the imperfect process of sam-
pling, we must determine which of the “significant” findings
we should believe and which we probably should not. The
present article is a brief introduction to some concepts that can
help us in this pursuit as it applies to regression-type model-
ing.

Most outside the community of statisticians are probably
unaware that there has been something of a revolution in data
analysis in the past 10 or so years. Modern computational
power has not only made it easier to solve complex and large
analytic problems but also allowed us to study, through a
technique called simulation, the very act of collecting data and
performing analyses. Through computer simulation studies
(sometimes referred to as Monte Carlo studies), researchers
with even modest personal computers can now study the
performance of both new and traditional data-analytic tech-
niques under a variety of circumstances. These simulation
studies have taught us a great deal about the scientific merit of
some of our conventions in data analysis and also have

pointed toward new directions that may improve our practice
as researchers.

In the present article, I will discuss a relatively narrow but
important concept that has been considerably illuminated by
simulation studies: the problem of capitalizing on the idiosyn-
cratic characteristics of the sample at hand, also known as
overfitting, in regression-type models. Overfitting yields
overly optimistic model results: “findings” that appear in an
overfitted model don’t really exist in the population and hence
will not replicate. Based at least in part on the simulation
evidence, I hope to show that our inattention to the problem of
overfitting may be hindering our scientific progress, and that
the problem could be readily improved by avoiding some
common mistakes and by adopting some alternative or addi-
tional steps in the process of model building. The discussion
that follows is relevant to just about any attempt to model data,
whether it be from observational studies or well-controlled
randomized trials and experiments.

The ensuing text is taken from a workshop I recently
presented to the members of the American Psychosomatic
Society (2) and was intended for a nontechnical audience. I
have purposely retained this nontechnical flavor and the in-
formal language here so that these often esoteric ideas may be
more accessible to a wider audience. Virtually none of the
ideas I present here are my own. I am reporting the work of
many others, explaining them in a way that I hope is under-
standable to readers of varying backgrounds and levels of
expertise in data analysis. Specifically, the vast majority of
this article is based on a relatively new statistical text by
Harrell (3), who was responsible for my initial exposure to
these ideas, and who continues to be a source of clarification
and encouragement in my own pursuit of understanding these
issues. Virtually all of the ideas presented here are discussed
in much greater detail in the Harrell text (3).

As a final note of preface, the reader will soon find that I
strongly endorse an approach in which as many of the ele-
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ments of the statistical model (such as the predictors that will
be included) are specified a priori, with the additional condi-
tion that the model must not ask too much from the data at
hand (a point that will be discussed in more detail later). I
hope to show that the information provided by such models
will generally constitute stronger scientific evidence than
models that were achieved in other ways, such as univariate
prescreening of predictors, or pulling variables in and out of a
model to see which produce the best fit. I want to emphasize,
however, that I am not at all opposed to going beyond those a
priori analyses to explore the data. On the contrary, given the
considerable personal and public resources we often expend in
collecting and analyzing data, I believe we have a scientific
and ethical obligation to extract as much information as we
can from that data. What I am arguing, however, is that the
various modeling techniques that we have at our avail fall
roughly along a continuum in terms of the confidence we can
ascribe to them. Predetermined models that have enough data
to support them reside on 1 end of the continuum because they
are more likely to produce replicable results, and on the other
end reside the more exploratory approaches, such as graphing,
fitting and refitting models, tinkering with assumptions, and
so forth. Both represent important components of the scientific
endeavor, but only if we make a frank assessment and de-
scription of their limitations.

PRELIMINARIES
Regression Models in Psychosomatic Research

The modern psychosomatic research literature is filled with
reports of multivariable1 regression-type models, most com-
monly multiple linear regression, logistic, and survival mod-
els. Although each has different underlying mathematical un-
derpinnings, they share a general form that should be familiar
to most, usually something like the following:

response � weight1 � predictor1 � weight2 � predictor2

� . . .weightk � predictork � error

In other words, we generally are interested in finding a
weighted combination of some set of variables that reproduces
or predicts as well as possible the values that we have ob-
served on the response or outcome variable. Typically, we
evaluate the results of the model by conducting significance
tests on the individual predictors and also by looking at how
well the weighted combination of those variables predicts the
response values. If we are good scientists, we also strive to test
the model against a new set of data, collected under different
circumstances, to assess how well the results generalize or
replicate. Underlying this entire pursuit, of course, is the
somewhat metaphysical assumption that somewhere out there

in the population there is a true model, and that we can make
a good approximation of that true model using only a portion,
or sample, from that population. Thus, one overarching aim of
modeling is to use the sample to come up with the correct set
of predictors along with their weights, thus recovering the true
model characteristics. If this aim is achieved, the model we
develop will predict well not only in the sample data set at
hand but also in new data sets. More broadly, if we have come
close enough to identifying the true model (which, of course
will still be only a crude approximation of the phenomenon we
are studying), the science can move forward because we can
then be pretty confident that the model is good enough to
guide further research, clinical decisions, and policy. Finally,
although there are some important distinctions between con-
ducting models for the purpose of hypothesis testing per se
versus modeling to make predictions, the fundamental princi-
ples of good model building are applicable to both aims.

Simulation Studies and the Advance of Data Analysis
as a Science

As I noted in the opening, much of the remarkable accel-
eration in data analysis has been a direct consequence of
improved computing power, which has allowed us to system-
atically study—via simulation—the very act of collecting and
analyzing data. Simulation studies are like being able to study
the accuracy of a diagnostic medical test under conditions in
which the true diagnosis is already known. A statistical sim-
ulation study of modeling begins with a computer-generated
population for which, much like knowing the correct diagno-
sis, the correct model is already known. The computer algo-
rithm then simulates the activity of drawing a sample from the
known population and conducting a regression model on the
data from the sample. Because it is all performed on a com-
puter, however, this act is repeated many thousands of times in
a few seconds or minutes, each time using a newly drawn
sample from the population (simulation studies often use
10,000 or more samples). The results from the many thou-
sands of models are tallied and compared with the true pop-
ulation model. Most importantly, we can systematically ma-
nipulate various aspects of sampling and analytic activity. For
example, we could use simulation to study how well an
ordinary linear regression model recovers some known regres-
sion weight when the sample size is 100. To do this, we create
a simulated population in which the true relation between x
and y can be represented as, say, the equation y � 0.4x and
error. The simulation program draws a large number of ran-
dom samples, in this case, 10,000 draws, each of N � 100,
from that predefined population and then performs the regres-
sion analysis on each sample. The regression coefficients, or
weights, from each sample’s regression model are then compiled
and described (Figure 1), empirically answering the question of
how often we get a regression weight that is close to the known
population value under the condition that N � 100.

Typically, simulation studies are designed like a factorial
experiment, systematically manipulating various aspects of

1The term multivariable refers to the idea that more than 1 predictor, or
covariable, is used in the same model. We often informally refer to these
models as multivariate, but strictly speaking, the term multivariate is intended
to describe models in which there is more than 1 response or outcome
variable.
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sampling and analysis, such the sample size, the shape of the
distribution of x or y, or the presence of missing data or noise
variables, to name just a few conditions. Simulation studies
have been a boon to the evolution of data analysis: they allow
us to study whether new or even tried-and-true analytic meth-
ods meet the aim of capturing population values.

REQUIREMENTS FOR A GOOD MODEL
Right Model Form to Fit the Probability Question

I will jump ahead here and beg the question of whether
modeling is a more useful approach than using specific tests,
for example, using a regression model to test the group dif-
ference on a continuous response variable rather than perform-
ing a t test. Testing is not incorrect and sometimes can be
sufficient to address the question at hand; models, however,
can offer the same information as the tests and much more
about the phenomenon under study, including an estimate of
the size and direction of the effect, a means by which predic-
tions can be made in new samples, and an estimate of the
uncertainty of the result with respect to the observed data. As
I proceed, however, it should be remembered that the issue of
overfitting is equally relevant to statistical tests as it is to
modeling, although perhaps not in as obvious a fashion. An
exposition of each of the available models is beyond the scope
of this article, but generally speaking, the choice of the model
is determined by the nature of the dependent variable (and,
more broadly, of course, the research question and the under-

lying probability model assumed). The vast majority of mod-
els that we use in psychological and medical research is
subsumed under the generalized linear model (4). The gener-
alized linear model allows a variety of distributions in the
response variable, including normal, Poisson, binomial, neg-
ative binomial, multinomial, and gamma. Models with nor-
mally distributed responses are a special case of the general-
ized linear model and can be handled using the familiar
general linear model forms, such as linear regression, analysis
of variance (ANOVA), and analysis of covariance. Similarly,
models with binary responses also are a special case of the
generalized linear model, being synonymous with logistic
regression, or in the case of ordered categories, the ordinal
logistic model. Censored responses most typically require
models in the time-to-failure family, such as the Cox regres-
sion model (5). For repeated or clustered response measures
(eg, a multisite study, twin or couples data, or repeated mea-
sures), mixed or hierarchical linear models can be used for
normally distributed responses, whereas there are extensions
available for repeated or clustered nonnormal responses (6).
As an aside, as a reviewer, I frequently see manuscripts that
express special concern when the predictors in a model are not
normally distributed, and hence make transformations or cat-
egories to overcome this problem. The shape of the distribu-
tion, or even the measurement form (ie, categorical vs. quan-
titative) of the predictors in a regression-type model, however,
generally has no impact on the model except in some very

Figure 1. Example of a simple simulation study. A simulated population was created in which the equation y � 0.4x � error was true. Ten thousand random
samples of N � 100 were drawn, and an ordinary least squares regression model, specified as y � bx � error, was estimated for each sample. The regression
coefficient b was collected from each of the 10,000 models and plotted here by frequency. The location and shape of such a distribution can be examined to see
whether it has the properties we would expect given our model assumptions.
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special instances. Consequently, under most circumstances,
there is no real a priori need to transform or categorize a
predictor on the basis of its distribution, or to be concerned
that the predictor side has a combination of categorical and
quantitative variables. As noted, it is the distribution of the
response variable (or, more correctly, the errors or residuals
that result from the prediction of the response) that matters.

Sample Size for Models and Overfitting

Assuming we have selected a reasonably representative
sample from the population and have used reliable and valid
measures of the variables of interest, we can use 1 of these
models to make a guess at what the true model, or at least part
of it, might look like. To achieve a model that will replicate in
a new sample, we need to have an adequate sample size to
generate reasonably accurate estimates of the unknowns (eg,
b-weights in multiple regression). If we try to estimate too
many unknowns—or, more technically speaking, if we use up
too many degrees of freedom2—with respect to the number of
observations, we will end up including predictor variables, or
finding complicated relations (interactions, nonlinear effects)
between the predictors and the response that indeed exist in
the sample, but not in the population. In most circumstances,
we also will reduce the power to detect true relations. Taken
to its extreme, if the number of unknowns in a model is equal
to the number of observations, the model will always fit the
sample data perfectly, even if all the predictors are noise, ie,
entirely unrelated to the response variable. Why does this
happen? To take a very simple case, we all know that when we
estimate a sample mean, its standard error (the probable fluc-
tuation of the estimated mean over repeated samples of the
same size) will be larger in small samples compared with
larger samples. That is, the estimate of the mean will vary
more widely over repeated samples when the sample size is
smaller compared with when the sample size is relatively
large. Similarly, regression-type models that use up too many
degrees of freedom for the available sample size tend to
produce weights that fluctuate considerably over repeated
samples. The wider fluctuation over samples increases the
chance of some of the regression weights being very large in
a given sample, thus leading to an overly optimistic fit. Cast in
slightly different light, statisticians often point out that esti-
mating a regression with 10 predictors and 20 observations is
in a sense the equivalent of estimating 10 separate 1-predictor
regressions, each with a sample size of N � 2. The problem of
instability of the regression coefficients is compounded by our

natural tendency to focus on those larger regression weights
(or worse yet, to cherry-pick the bigger or more significant
weights for a final model), rather than choosing a priori which
ones we will pay attention to. This is really no different from
the problem of post hoc analyses, or data-peeking, such as the
practice of rummaging through subgroups either via interac-
tion terms (or worse, analyzing subgroups separately) after an
experiment is conducted and then interpreting only the largest
effects. If you use a sample to construct a model, or to choose
a hypothesis to test, you cannot make a rigorous scientific test
of the model or the hypothesis using that same sample data.
This, by the way, is the real statistical meaning of the term
post hoc—it does not refer to afterward in terms of time.
Rather, it refers to looking at the data to decide which tests or
parameters will be included in the analysis and interpretation.

To illustrate further the notion of too many unknowns for the
sample size, I conducted a small simulation study to show just
how easy it is to produce a good-looking model when the data are
overfitted. I created 16 noise variables using a random number
generator, and arbitrarily chose 15 of those variables to be pre-
dictors of the 16th in a multiple regression model. Because all the
variables are composed entirely of random numbers, the true
model is one in which no real relations exist among any of the
variables. Thus, anything we see in the model that looks like a
systematic relation between the predictors and response is, by
definition, an artifact. In the first simulation, I drew 10,000
random samples for each condition of N � 50, N � 100, N �
150, and N � 200. Because there were 15 variables in the
models, these sample sizes correspond to ratios of 3.3, 6.6, 10,

2I use the term degrees of freedom throughout this article in the sense of the
number of unknowns in a system that are free to vary. The number of degrees
of freedom available for estimation in a regression model is roughly the
number of unique bits of information (observations or cases) minus the
number of unknowns (regression weights) to be estimated. In other words,
each unknown uses up a degree of freedom. The notion of using too many
degrees of freedom given the amount of information is a key idea in many
branches of science and is directly related to the concepts of parsimony and
falsification, or disconfirmation, in the philosophy of science. See Mulaik
(26), for example.

Figure 2. Pure noise variables still produce good R2 values if the model is
overfitted. The distribution of R2 values from a series of simulated regression
models containing only noise variables. The model contained 15 predictors,
each consisting of randomly generated values, and a response variable, whose
values were also randomly generated. Thus, the true model has an R2 of 0.
Four sets of 10,000 random samples were drawn, each of sample size N � 50,
N � 100, N � 150, and N � 200. The smoothed frequency distribution of the
R2 values generated by each of the 10,000 models is plotted here for the 4
sample size conditions. Note that even when the number of cases per predictor
is reasonably good (200/15�13.3), there are, solely because of the chance of
the draw, a fair number of non-0 R2 values. When there were only approxi-
mately 50/15�3.3 observations per predictor, the frequency of large R2 values
was quite high.
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and 13.3 observations per predictor, respectively. I collected the
R2 values for each model and plotted them in Figure 2. The plot
shows very clearly that the rate of spurious R2 values increases
considerably as the ratio of observations per predictor becomes
smaller. In other words, if you put enough predictors in a model,
you are very likely to get something that looks important regard-
less of whether there is anything important going on in the
population.

For many decades, there have been a variety of rules of
thumb for the sample sizes required for modeling. As it
turns out, recent simulation studies have shown that they
are not all that bad. We should always bear in mind,
however, that such rules are only approximations, and that
situations will arise in which we need fewer, but more
likely, more observations than they suggest. For linear
models, such as multiple regression, a minimum of 10 to 15
observations per predictor variable will generally allow
good estimates. Green (7) showed that in terms of the power
to detect a typical effect size seen in the behavioral sciences,
a somewhat better rule might be to have a minimum base
sample size of 50 observations and then roughly 8 additional
observations per predictor. As Green (7) points out, however,
a much larger number of observations may be needed if the
effect size is small or the predictors are highly correlated. On
the other hand, if the effect size is very large, smaller sample
sizes may be sufficient. For binary and survival models, the
size of the entire sample is not directly relevant. Rather, it is
the limiting sample size that matters. In the case of models
with a binary response, if the number of events is smaller than
the number of nonevents, the limiting sample size is the
number of events. Conversely, if the number of nonevents is

the smaller of the 2, we use the number of nonevents as the
limiting sample size (in other words, the limiting sample size
is N � min[p, 1-p], where p is the proportion of events). For
survival models, the limiting sample size is simply the number
of events. Thus, even if the sample size is 1000, if there are
only 10 events, the limiting sample size is only 10.

Peduzzi et al. (8,9) have published simulation studies
suggesting that logistic and survival models will produce
reasonably stable estimates if the limiting sample size
allows a ratio of approximately 10 to 15 observations per
predictor. Figure 3 is reproduced from the study by Peduzzi
et al. (9) of logistic regression. The simulation used a model
developed on real data in which death in cardiac patients
was predicted from a variety of medical background vari-
ables. Allowing the model derived from this data to repre-
sent the true population model, they examined, among other
things, how well the true regression weights were recovered
depending on the number of events per predictor.

The x-axis in Figure 3 represents the ratio of events per
predictor variable in the model, whereas the y-axis shows the
percent relative bias of the average regression coefficient from
the simulation samples compared with the true coefficient.
The results suggest that when there were fewer than 10 events
per predictor, the estimates tended to be badly biased. In fact,
one might argue based on the figure that the ratio should be at
least 15. In further analyses from the same article, Peduzzi et
al. (9) show that in many cases, this bias was not trivial in
magnitude. For example, when there were only 5 events per
predictor, anywhere from 10% to 50% of the simulated re-
gression weights were biased by as much as 100%. When only
2 events per predictor were available, 30% to 70% of the
estimates had bias greater than 100%! At a minimum, these
results should make us very wary of an article that does not at
least meet the rough guideline of 10 to 15 events per predic-
tor—an all too common feature of many published articles.
These results should also give us great pause when we plan
our own studies and conduct analyses. As noted, Peduzzi et al.
(8) have also shown that the rule of 10 to 15 events per
predictor applies to survival analyses. As was the case for
linear regression, there are conditions under which we might
need more events for logistic or survival models, such as small
effect sizes, truncated ranges in the predictor variables, or
extreme event probabilities. Thus, in designing a study, we
should plan a sample size that will allow us to estimate the
most complex model we might be interested in (in terms of the
number of predictors and also nonlinear, multiplicative terms,
or subgroup analyses), such that the estimates will be stable
and the fit not overly optimistic. If we cannot gather a sample
of sufficient size, we have to find ways to simplify our model,
ie, use fewer degrees of freedom, or we have to correct for
overfitting. Before we turn to these other approaches, we
should focus on several common techniques that actually
make matters worse.

Figure 3. Results of the simulation study of logistic regression models by
Peduzzi et al. Pedduzi et al. (9) studied the stability of logistic regression
coefficients under a variety of events-per-predictors ratios. Recall that the
limiting sample size for a logistic model is the number of events (when there
are fewer events than nonevents). The x-axis represents the ratio of events per
predictor in the model for the case of 7 predictors. The y-axis shows the
percent relative bias in the regression weight compared with the known
population weight. The results suggest that bias is unacceptably high when
there are fewer than 10 to 15 events per predictor. Reproduced with permis-
sion (9).
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WHAT NOT TO DO TO PRESERVE DEGREES OF
FREEDOM
Automated Stepwise Regression3

Many modeling software packages include an option that
automatically selects the best model. The best-known forms of
automated selection are forward or backward stepwise selec-
tion. In a nutshell, these are algorithms that sift through large
numbers of correlations and partial correlations, fitting and
refitting models until some final model is achieved. Research-
ers typically conduct this type of regression analysis by spec-
ifying some keyword such as backward, forward, or stepwise,
depending on the software. They allow the algorithm to churn
and produce a final model, which they in turn usually report
as-is in the final published article. The problems with auto-
mated selection conducted in this very typical manner are so
numerous that it would be hard to catalogue all of them here.
One psychology journal has even made it an editorial policy to
summarily reject any article that uses the technique (10).
Nevertheless, the practice remains surprisingly popular, and
such models continue to appear in even the most prestigious
journals, in some cases using the results to draw conclusions
about life-and-death clinical issues. Although automated se-
lection is still discussed in some popular statistics textbooks,
most advised caution in its use even in the early days of its
development, when excitement abounded about the possibility
that machines alone would be able to solve our problems. For
many, it was always intuitively evident that letting the ma-
chine think for you was not a good idea, and certainly we’ve
long understood the problems created by conducting many,
many statistical tests (which is what automated selection
does). The primary problem with automated selection is that
under the most typical conditions we see in medical and
psychological research, ie, moderate-to-small sample sizes
and many possible predictors, many of which are correlated
with one another, the possibility of overfitting is far too great
for the results to have anything but the most tentative inter-
pretation. The late Jacob Cohen perhaps put it best when he
said that the “capitalization on chance that [stepwise selection]
entails is more than I know how to compute” (11). Although
it may look like we have not used many degrees of freedom in
the final model, we have actually used up a whole passel of
them along the way during the selection process. These phan-
tom degrees of freedom just happen to be hidden from us at
the end stage.

More recently, simulation studies have supported the ear-
lier warnings about automated selection, showing that, unless
special corrections are made, the problem of overfitting can be
quite grave in automated regression (12,13). The simulations
of Derksen and Keselman (13) are among several that dem-
onstrate just how poorly automated selection performs under

conditions that are frequently encountered in real-world re-
search. They found that stepwise selection produced final
models in which 30% to 70% of the predictors were actually
not related to the response in the population, ie, were pure
noise. They further concluded that: a) “The degree of corre-
lation between candidate predictors affected the frequency
with which the authentic predictors found their way into the
model,” b) “The greater the number of candidate predictors,
the greater the number of noise variables were included in the
model,” and c) “Sample size was of little practical importance
in determining the number of authentic variables contained in
the final model.” More recently, Steyerberg et al. (14) simu-
lated a series of logistic regression models that compared
automated stepwise selection, forced simultaneous entry (all
candidate variables remain in the model), and a “sign-correct”
method (removing variables whose regression coefficients did
not have a sign that made substantive sense, eg, age inversely
related to death). Automated selection proved to be the least
desirable procedure among the 3 with respect to overfitting,
even when the other 2 procedures exceeded the recommended
events per predictor guidelines. It is not only the traditional
stepwise procedures that overfit models. Even some of the
more sophisticated alternatives such as best subset regression
do not solve the problem of overfitting (15), again because
more degrees of freedom are used than the sample size can
support. I should not leave this topic without adding that
procedures for correcting these particular overfitting problems
have existed for many years (16)—it has been known for some
time, for example, that the correct model degrees of freedom
for stepwise procedures is really closer to the total number of
all candidate predictors—but these corrections are apparently
almost uniformly ignored by most researchers in our field. The
bottom line here is that if an article reports the results of a
regression model that has used an uncorrected stepwise selec-
tion process, be extremely skeptical of the conclusions. The
model and consequent conclusions may indeed be correct—
but there is simply no way of being certain. Automated selec-
tion algorithms that do make the appropriate corrections, such
as the lasso method by Tibshirani (17), have been developed,
but they are not yet widely available. If you absolutely insist
on using a stepwise algorithms, simulations by Steyerberg et
al. (14) showed that the least harmful of the approaches is
probably backward selection using a very liberal p value
criterion, say .50, again paying careful attention to the guide-
lines for sample size and the number of predictors. The au-
thors argue that this is probably because when we have too
many candidate predictors for the sample at hand, there is not
much power to detect important predictors. The liberal crite-
rion p value compensates by making it more likely that truly
important predictors will be retained in the model. However,
there is still the problem of many unimportant variables being
included in the final model, but these simulations suggest that,
under these particular circumstances, the inclusion of true
predictors via the liberal entry criterion outweighs the problem
of including unimportant variables.

3Sometimes the term stepwise regression is used to refer to hierarchical or
block forced entry regression, in which variables are forced and maintained in
a model sequentially, as described in, for example, Cohen and Cohen (18).
This technique is quite distinct, however, from automated stepwise regression,
and, when conducted properly, is not associated with the problems I describe.
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Univariate Pretesting or Screening

One very common way of selecting variables for a regres-
sion model is to look at the univariate relation between each
variable and the response, and then to cull only those variables
significant for entry into the subsequent regression analysis.
Although it may appear innocent enough, this is actually just
a variant of automated selection in disguise; even though we
did the testing in a preliminary manual step, we have still
spent degrees of freedom against the sample and increased the
risk of overfitting. The true degrees of freedom for the regres-
sion model should be the total number spent in all stages of
data analysis. Using univariate prescreening also creates other
problems in the context of multivariable modeling. For exam-
ple, variables in isolation may behave quite differently with
respect to the response variable when they are considered
simultaneously with 1 or more other variables. If there is
suppression (18), for example, the relation between a variable
and outcome may not appear to be important at all in the uni-
variate case, but may become quite important after adjustment for
other covariables. Pretesting using p values is not the only culprit
in producing these so-called phantom degrees of freedom. For
example, many of us are taught to explore the possibility of a
nonlinear relation between a predictor using a 2-step procedure.
In the first step, we include a linear and nonlinear term, eg, x and
x2, in the model. If the nonlinear term is not significant, then we
remove it from the equation and report only the linear term result.
Grambsch and O’Brien (19), however, show that when we test
and then remove a nonsignificant nonlinear term and report on
only the linear coefficient, the remaining linear test is too liberal
unless we account for the degree of freedom spent in testing that
nonlinear term. Extending this thinking beyond traditional pre-
testing, Faraway (20) demonstrated that these phantom degrees
of freedom actually arise in all sorts of unexpected places, such
as examining residuals for homogeneity of variance, testing for
outliers, or making transformations to improve power, to name a
few, underscoring the principle that virtually any data-driven
decision about modeling will lead to an overly optimistic model.
The article by Faraway (20) in particular has rather depressing
implications for how we go about much of our data analysis in
many fields, including our own. For example, it shows that there
is only so much information that can reliably extracted from a
given data set before we have used up far too many phantom
degrees of freedom. Statisticians have long recognized something
like this uncomfortable complication with respect to multiple
tests and the increase in Type I error—often joking that if one
took the most conservative stance with respect to multiple testing,
we would probably have to be allocated a certain number of tests
per career, retiring when we had expended them all. If there is a
limit to how many degrees of freedom we can use with a given
sample, how should we proceed, especially with respect to the
usual practice of the repeated analyses of public data sets? I
suppose a reasonable approach might be the same as many
recommend with respect to the multiple testing problem: if a
researcher enters the analysis in good faith with a firm set of a

priori hypotheses or tests in mind, and stays within the guidelines
for sample size for a given model, we can at least be assured that
the overfitting problem has been at least contained, if not per-
fectly controlled, for that particular model.

Dichotomizing Continuous Variables

It may appear strange to introduce this topic here, but in
some very commonly encountered circumstances, categoriz-
ing a continuously measured predictor also will lead to overly
optimistic results. Most readers should be familiar with the
idea that, apart from its absurdity from a measurement per-
spective, chopping variables like blood pressure or age into
groups will necessarily result in a loss of information, lower
measurement precision, and usually a considerable loss of
power in subsequent analyses.4 What is less well known is that
the common practice of dichotomizing 2 continuous variables
and using them as factors in an ANOVA will yield an unac-
ceptable Type I error rate when those 2 original variables are
even moderately correlated. Because ANOVA is just a special
case of the general linear model, this problem also will haunt
us in the multivariable regression situations. Maxwell and
Delaney (21) studied what happens when the continuous pre-
dictors, x1 and x2, are dichotomized at the median and the true
model is y � 0.5x1 � 0x2. In other words, in the population
the continuous variable x1 is related to y, but the continuous
variable x2 is not. The trouble arises when x1 and x2 are
correlated, and gets worse as that correlation increases. Table
1 shows that the Type I error rate associated with the relation
between x2 and y increases dramatically as a function of the
correlation between x1 and x2. The key to interpreting this
table is that the true relation between x2 and y is 0, so that if
the model were fitted appropriately, the Type I error rate
should be something like 0.05 for the test of the relation
between x2 and y. In the first column of Table 1, we can see
that regardless of sample size, when x1 and x2 are uncorre-
lated, an acceptable Type I error rate is preserved, ie, we reject
the null hypothesis that x2 has a non-0 relation with y only
approximately 5% of the time over the long run. When the
correlation between x1 and x2 increases, however, dichotomiz-
ing both variables begins to increase the likelihood of a Type
I error. When the correlation between x1 and x2 exceeds 0.5,
the Type I error rate becomes alarmingly high. Maxwell and
Delaney (21) further demonstrate that dichotomization also
can yield spuriously significant interactions if there is a non-
linear relation between 1 of the predictors and the outcome. It
probably is not hard at all to find an article in the published
literature in which 2 (or more) correlated variables, such as
depression and hostility, body mass index and blood pressure,
or perhaps 2 related aspects of job stress, have been dichoto-
mized and entered into a linear model. As in the case with
models that have used too many degrees of freedom for the

4For a thorough and damning review of dichotomization in general, see
MacCallum et al. (27). Readers also may find the simulation applet by
McClelland (28) very useful in developing an intuitive understanding of how
dichotomization reduces power.
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sample size, dichotomization is yet another way to produce
results that do not really reflect the true model.

Multiple Testing of Confounders

A prime assumption of any regression-type model is that
we have included all of the important variables in the equa-
tion. Because of constraints in resources and the limitations of
our knowledge, this assumption is, of course, virtually impos-
sible to meet in most applied research settings, particularly
with observational designs. What we can do, at a minimum, is
try to collect data on suspected confounders and ensure that
we have made some account of their effect by including them
in the model. If we can afford it, we also can improve the
precision of the model by including variables that are not
necessarily related strongly to the other predictors (and hence
not confounders), but that are related to the response. Finally,
if we are interested in potential mechanisms that might help
explain the relation between some predictor and the response,
we can include those putative mediating variables in the
model and determine whether the results are consistent with
our causal hypotheses. Being able to include extra explanatory
variables or possible mediators in a model is nice, but the
concern about confounders is one that we recognize as most
immediate. Indeed, having published a fair number of regres-
sion-type model results, I can tell you that these publications,
regardless of whether they are based on randomized trials or
observational data, are almost inevitably followed by a flow of
personal communications and published correspondence
pointing out which covariates I have failed to include in the
model. In most cases, if I had included all of the suggested
covariates and also wanted to follow the sample size-to-
predictors guidelines discussed earlier, I would spend the rest
of my career waiting for enough data to be collected. I am
exaggerating (though in some cases only slightly), but it does
highlight the point that you have to understand the limitations
of your data and often make some hard choices, including
accepting the possibility that there always may be a lurking
confounder out there somewhere, vs. living with an overfitted
model with biased coefficients.

If you do have a pool of potential confounders measured

and available for analysis, but do not have the sample size to
support that many tests, what is the best way to proceed? This
is a very difficult and controversial question, and inevitably
spurs lively debates among statisticians. The conventional
practice is, irrespective of sample size, to add 1 or more of the
potential confounding variables to the model, and if the effect
of the predictor of interest is wiped out, we conclude that the
original relation was confounded with the variables we just
added. However, in the context of the phantom degrees of
freedom problem, we should immediately see that there are
pitfalls to this practice. First, for each new predictor variable
we add to the model, we again have expended a degree of
freedom, regardless of whether that new variable ultimately
appears in the final model or not. As discussed, the number of
degrees of freedom expended, whether explicit or phantom,
should be kept within the limits of the sample size, or, as we
have seen earlier, we will not be able to trust the final model.
Second, because the correlations among the predictor, the
putative confounder, and the response are all subject to sam-
pling error, one of the confounders will knock the predictor
out of the model by chance alone if you test enough of them.
The real problem here is that unless you have been very
careful to account for expended degrees of freedom, you will
not have any way of knowing the extent to which the apparent
confounder is a real confounder or just caused by the play of
chance sampling. As I noted earlier, the dilemma boils down
to whether we are more concerned about confounders or about
deriving an overfitted model. My personal preference is to
choose a priori a set of predictors whose number or complex-
ity remains within the sample size limits discussed and to stay
with that model no matter what. This does risk overlooking a
hidden confounder that I have not anticipated, but on the other
hand, the resultant model is entirely transparent to me and the
scientific community: there are no phantom degrees of free-
dom or overfitting, and consequently, the model will be more
likely to replicate in new samples. What if I am still concerned
about confounders? I have always been of the mind that the
typical research report should be divided into 2 sections, 1 for
a priori hypotheses and another for “interesting stuff I’ve
found in this data set that may or may not be reliable—I just
can’t be sure.” I would put the confounder search in the latter
section and use very tentative language to interpret the results.
Alternatively, one can adopt some of the strategies suggested
to preserve degrees of freedom in the section below, or apply
the appropriate correction for the number of degrees of free-
dom really expended in the analysis (see the section on shrink-
age and penalization likelihood below), and then have the
luxury of interpreting the results with more confidence.

I am aware that this is a controversial position. In fact, after
reading a first draft of this manuscript, 1 reader understand-
ably posed the semiserious question, “Why should I be pun-
ished for looking for confounders?” I teased back that I like to
think of it more of a sobering-up than a punishment! At a
minimum, I hope that researchers will give some thoughtful
consideration to the issue of overfitting because of multiple

TABLE 1. Type I Error Rates for the Relation Between x2 and y
After Dichotomizing 2 Continuous Predictorsa

N
Correlation Between x1 and x2

0 .3 .5 .7

50 .05 .06 .08 .10
100 .05 .08 .12 .18
200 .05 .10 .19 .31

a Maxwell and Delaney (21) calculated the effect of dichotomizing 2 contin-
uous predictors as a function of the correlation between them. The true model
is y � .5x1 � 0x2 where all variables are continuous. If x1 and x2 are
dichotomized, the error rate for the relation between x2 and y increases as the
correlation between x1 and x2 increases. This table is reproduced with per-
mission.
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confounder searches, perhaps limiting the number of tests they
perform, applying the recommended techniques or corrections
discussed below, or at least couching their interpretation of the
results in appropriately cautious language. If nothing else, this
dilemma underscores the need to plan a study such that there
are sufficient observations to include in the model based on
the number of confounders they think might be important to
include. Perhaps someday there will be a series of simulation
studies that will help illuminate this specific problem further.
At present, I know of no study that addresses this question
directly.

WHAT TO DO INSTEAD: SOME STRATEGIES FOR
AVOIDING OVERFITTING
Collect More Data

Sometimes we have to come to grips with the reality that
we simply do not have enough data to answer a given ques-
tion. We just have to get out and collect more data, and all the
sophisticated technical fixes in the world will not change that
fact. For example, if there are only 20 events available for a
survival analysis, and we absolutely need to estimate the
regression coefficients for even just 5 or 6 predictors, we
know that these are not really enough data to provide much in
the way of stable estimates. We are therefore better off finding
a way to gather more events, either by increasing the fol-
low-up time or by recruiting more participants into the study.
If this is not possible, there might be some heuristic value in
reporting something from the available data, but it should be
made extremely clear that the result is tentative at best.

Combine Predictors

One obvious approach to preserve degrees of freedom is to
reduce the number of predictors in the model. As we have
learned, however, removing a predictor by peeking at its relation
with the response, either through a mechanized procedure or by
hand, generates problems. Ideally, we would select a limited
number of predictor variables based on our substantive knowl-
edge and maintain them in the model regardless of how it turns
out. Sometimes, however, we do not have enough information to
make reasonable a priori choices about predictors and are left
with using the data at hand to choose variables to include in the
model. I now briefly discuss a few possible approaches for
reducing the number of variables in the model in ways that avoid
or minimize overfitting. Notice that all of these approaches avoid
peeking at the data with respect to the relations or tests of
interest—that is, they do not rely on examining the relation
between the predictors and the response variable to select which
variables to include or exclude from a model.

One useful, easy approach is to combine or eliminate
closely correlated predictors. For example, it might be possi-
ble to use a clustering algorithm, such as recursive partition-
ing, factor analysis, or principal components, to combine 2 or
more predictors into 1 variable (of course, in a hypothesis-
testing context, we would combine only variables that are of
secondary importance to our main question). Alternatively,

some covariables might be combined into a single score based
on theoretical knowledge or previous results. For example, for
a model in which all-cause mortality is the response, we might
use 1 of the recognized comorbidity indexes (22) for weight-
ing several medical and demographic covariates to combine
those variables into a single composite, thus saving many
degrees of freedom. When the weights for these indices are
derived from very large samples, the resulting composite is
probably a better estimate of the true relation between the
component variables and the outcome in question in the pop-
ulation than the estimate we might make from our smaller
sample. Using an index still results in a tradeoff—we neces-
sarily lose specific information about the components of the
index but are preserving degrees of freedom in the model. The
decision to use an index at all, of course, also rests on how
confident we are in its theoretical and measurement validity.

As an alternative to using indexes as a means of preserving
degrees of freedom, we might instead investigate the possi-
bility of fixing some regression coefficients if the relations
between that predictor and the response in question have been
well-studied. For example, if we see again and again in the
literature that age produces a consistent risk ratio with respect
to the probability of a cardiac event, we might be confident
enough about this relation to make the regression coefficient
for age a constant in the model, thus saving a degree of
freedom. This approach is taken in many fields, but the
practice has not made its way into psychosomatic research.
Econometricians, for example, often fix some, or even all, of
the regression coefficients in a model because they are willing
to assume that the values derived over years of study are
probably about right, or at least good enough to serve as an
adjustment variable in the model. In other words, they are
willing to make those values an assumption of the model. If
our study sample is similar enough to those from which these
indexes or single fixed coefficients have been computed, we
might be willing to trade the loss of sample-specific informa-
tion about these covariates for the reduction in bias associated
with a better sample size-to-predictors ratio.

Shrinkage and Penalization

Even after you have accounted for phantom degrees of
freedom and avoided asking more from the data than the
sample size can support, the final model can still be too
optimistic. (And as we have seen, if we haven’t paid attention
to these issues, we know that the model will be too optimistic).
Shrinkage techniques allow us to understand the extent of this
overoptimism and generate an estimate of how well the model
might fit in a new sample. The adjusted R2 that appears on the
output of many statistical packages is actually a type of
shrinkage estimator. This value is an estimate what the fit of
the regression model would be if it were fitted against a new
data set (assuming that you already have accurately accounted
for all the degrees of freedom.) Computing power also has led
to newer approaches to shrinkage. For example, a technique
called bootstrapping (23) can generate estimates of shrinkage
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not just for the fit of the model but also for many other aspects
of the model, such the regression weights and intercept. Boot-
strapping is actually a variant of simulation, with the impor-
tant distinction that repeated samples are drawn with replace-
ment from the data set at hand. As in simulation, the model
under study is then estimated for each sample and the results
are tabulated. We can, for example, derive a distribution of R2

values, b-weights, means, standard deviations, and so forth
from the repeated samples. (Many statisticians I have spoken
with believe that resampling techniques such as bootstrapping
will probably replace traditional theory-based test statistics
some day, such that we will be reporting empirical p values
rather than traditional ones derived from the theoretical sam-
pling distributions.) Bootstrap validation of models also has
been shown to be superior to older techniques of model
validation, such as splitting the data set into training and
testing halves (24). Even when bootstrapping is not included
in the software package (S-Plus and R, for example, include
modules), it is relatively easy to implement, and the code for
many popular software packages such as SAS and SPSS is
readily available on the Internet. I imagine that bootstrapping
will become a standard part of many statistical software pack-
ages in the next few years. Advanced computing also has
allowed the relatively easy calculation of even more complex
shrinkage algorithms, such as maximum likelihood penaliza-
tion (see Harrell [3], pp. 207–210). This latter approach is a
sort of preshrinking of the regression coefficients and fit, such
that the resultant model will be much more likely to replicate.
Penalization has the advantage of allowing us to adjust spe-
cific areas of the model in which complexity (eg, interaction
terms, nonlinear terms) may have given us a fit that we really
did not deserve. Steyerberg et al. (14) have shown that models
using preshrunken estimates and a fixed set of predictors tend
to be the most likely to replicate in new samples. Unlike
bootstrapping, with the exception of S-Plus, penalized likeli-
hood estimation is not yet widely available in canned form in
the major statistical software packages.

CONCLUSION
In the preceding pages, I have covered a relatively narrow but

important aspect of model fitting. The broad essence of what I
have tried to convey is that we need to be mindful of the known
limitations of our analytic tools, and that there is still no substitute
for thinking long and hard about the scientific question at hand
(see Freedman [25] for an excellent discussion of this concept).
Good analytic practice, of course, requires a whole host of
considerations not discussed here, such as careful attention to the
reliability and validity of the measures, the selection of the
sample, the range of the predictors, and satisfaction of a number
of other underlying assumptions, to name a few. A quick perusal
of our literature suggests, however, that overfitting is not a bad
place to start in terms of putting our scientific house in better
order. As a field, we have been overfitting models for years, in
some cases, very badly. In some cases, this may be of little
consequence. However, it is not hard to imagine that millions of

research dollars and uncountable hours of work are spent each
year chasing findings or ideas that arose from the failure to
appreciate this concept more fully. Perhaps worse, given the
prevalence of overfitted models, some of these spurious conclu-
sions must surely have made their way into the world of clinical
decision-making. There also may be ramifications for the credi-
bility of the science among the public. One study shows that
variable x is a risk factor for heart disease (and, of course, the
press makes much of it), whereas the next study repudiates the
variable x theory, showing instead that variable x is not a risk
factor at all—it is really variable z! Which do we believe?
Although there are a number of reasons that findings tend to
fluctuate across studies, tightening up our modeling practices
might go a long way in reducing the frequency with which this
confusion arises.

As I noted at the outset of this article, none of this is meant
to suggest that we should be slavishly conservative in how we
test our scientific ideas. On the contrary, we have an obliga-
tion to entertain and explore every sort of means of under-
standing of our precious data. However, we have an equal
duty to understand and appreciate the varying shades of rigor
associated with each of these pursuits and to interpret and
report results accordingly. It is my hope that this article has
inspired readers to consider some of these issues more deeply,
perhaps digging into the literature on their own or with col-
leagues, perhaps initiating debate, or even incorporating some
of the points outlined into their own research endeavors.

I am extremely grateful to Frank Harrell, PhD, Beverly Brummett,
PhD, and Heather Lett, MA, for their very helpful comments on
earlier drafts of this manuscript.
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