Introduction

T
L 188
L 188

L
TR
i

To gain an understanding of some new area, it is virtually unavoidable to be
immersed in the material for a while without exactly understanding where it will
lead.

Principles of Object-Oriented Software Development 1-1
e themes and variations — object speak
e abstraction — paradigms of programming
e software development — the OO life-cycle
e object technology — trends

Additional keywords and phrases: object, data abstraction, analysis,
design, implementation, distribution

Slide 1-1: Introduction

This first chapter will give a preliminary characterization of object-oriented
software development, sketch some of its history and give an outline of the main
themes of this book. The dominant theme may be summarized by the phrase that
object-orientation provides the software developer with the right abstractions for
the analysis, design, implementation, and perhaps even the testing of complex
software systems. The underlying theme of the book, however, is to indicate the
technological requirements that must be satisfied to employ these abstractions

2 Introduction

effectively in actual software development. Yet another theme of the book is
based on the observation that what OO offers is not altogether new. So, we will
relate the solutions offered by OO to their precedents in the history of computer
programming and software design. The reader may then establish whether OO
is just another toy for software developers or a significant contribution to both
software engineering and programming.

1.1 Themes and variations

Nowadays, many have at least some notion of object orientation. Undergraduate
courses teaching programming in Java are becoming standard practice. And,
in industry and business, object-oriented technology is being adopted on an
increasingly large scale. Nevertheless, to some extent, object orientation is still
an emerging technology with many open questions. So, we will start with a brief
survey of what object orientation is about, what solutions it offers and what is
needed to put these solutions effectively into practice. We will also briefly review
some object terminology, reflect on the notion of object computation, and discuss
design by contract.

Themes and variations 1-2

e abstraction — the object metaphor

e modeling — understanding structure and behavior
e software architecture — mastering complexity

e frameworks — patterns for problem solving

e components — scalable software

Slide 1-2: Themes and variations

Object metaphor In an object-oriented approach, objects are our primary
abstraction device. Objects provide a metaphor that helps us in each phase of the
software life-cycle. During analysis, we may partition the domain into objects,
that have properties, possibly responsibilities, and relations among each other. In
design, objects are our primary unit of decomposition. In our design, objects may
reflect real life entities, such as Employer and Employee, but may also represent
system artefacts, such as stacks or graphics. In actual development, that is in
the implementation, objects are our unit of implementation. Each object itself
may be regarded as a collection of functions. But it is the collection of functions,
and the behavior that they describe, that we take as our unit; not the individual
function.

Modeling Taking objects as the unit of analysis, design and implementation,
allows us to define the structure and behavior of a software system in a natural

Themes and variations 3

way. Nevertheless, although this may at first sight seem to simplify our task, it
does actually become more difficult to develop software. Why? Simply, because it
takes more effort to find the right kinds of objects! It is difficult to arrive at stable
abstractions, to define the corresponding objects, to define the objects’ interfaces
and to define the appropriate relations between the objects, and to implement
them so that everything works. A consequence of adopting an object-oriented
approach is that we have to spend more time in describing and understanding the
structure and behavior of the system, and to learn the formalisms and tools that
enable us to do so.

Software architecture Objects not only provide a metaphor. Objects also
define a computational platform. Computation in an object-oriented system
consists of objects sending messages to one another. This may give rise to very
complicated sequences of instructions, in particular when the system is dependent
on events from the outside, for example the window or network environment. To
master this complexity, we need to think about how objects can be made to
fit together. To benefit from an object-oriented approach, we need to design a
software architecture that defines and regulates the interactions between objects.

Frameworks When does an object-oriented approach pay off? It does pay off
when we have arrived at (more or less) stable abstractions for which we have
good implementations, that may be reused for a variety of other applications.
A framework is a kind of library of reusable objects. However, in contrast with
ordinary software libraries, frameworks may at times take over control. The
best-known examples of frameworks are in the GUI domain; frameworks in other
domains (e.g. the business process domain) are emerging. Using a framework may
simplify your life, since a framework provides generic solutions for a particular
application domain. But the price you pay is twofold. You have to understand
what (patterns of) solutions the framework provides, and you have to comply
with the rules of the game imposed by the framework.

Components Frameworks consist of components. Simplistically, components
correspond to objects in a one-to-one way. However, life is more complicated.
Components usually consist of a collection of objects that provide additional
functionality that allows components to interact together. A typical example of
components are distributed objects, objects that may be accessed over a network.
These objects must have, preferably in a non-visible way, all the functionality
needed to make a network connection and send data (arguments and results) over
a network.

1.1.1 Object terminology

Object-orientation originally grew out of research in programming languages.
The first object-oriented language was Simula. However, Smalltalk may be held
responsible for the initial popularity of the object-oriented approach. The termi-
nology Smalltalk introduced was at the time unfamiliar and, for many, somewhat

4 Introduction

hard to grasp. Nowadays, students and IT specialists, have at least heard the
object-oriented jargon. Let’s briefly look at it. See slide [=3. Objects provide
the means by which to structure a system. In Smalltalk (and most other object-
oriented languages) objects are considered to be grouped in classes. A class
specifies the behavior of the objects that are its instances. Also, classes act as
templates from which actual objects may be created. Inheritance is defined for
classes only. From the perspective of design, inheritance is primarily meant to
promote the reuse of specifications.

Object terminology object speak 1-3

e objects — packet containing data and procedures

e methods — deliver service

e message — request to execute a method

e class — template for creating objects

e instance — an object that belongs to a class

e encapsulation — information hiding supported by objects

e inheritance — mechanism allowing the reuse of class specifications
e class hierarchy — tree structure representing inheritance relations

e polymorphism — to hide different implementations behind a
common interface

Slide 1-3: Object terminology

The use of inheritance results in a class hierarchy that, from an operational
point of view, determines the dispatching behavior of objects, that is what method
will be selected in response to a message. If certain restrictions are met (see
sections 77, 7?7 and ?7), the class hierarchy corresponds to a type hierarchy, speci-
fying the subtype relation between classes of objects. Finally, an important feature
of object-oriented languages is their support for polymorphism. Polymorphism is
often incorrectly identified with inheritance. Polymorphism by inheritance makes
it possible to hide different implementations behind a common interface. However,
other forms of polymorphism may arise by overloading functions and the use of
generic (template) classes or functions. See sections ?? and ?7.

Features and benefits of OOP Having become acquainted with the terminol-
ogy of OOP, we will briefly review what are generally considered features and
benefits from a pragmatic point of view. This summary is based on [Pok89]. I
do expect, however, that the reader will take the necessary caution with respect
to these claims. See slide [=4.

Both information hiding and data abstraction relieve the task of the program-
mer using existing code, since these mechanisms mean that the programmer’s at-
tention is no longer distracted by irrelevant implementation details. On the other
hand, the developer of the code (i.e. objects) may profit from information hiding

Themes and variations 5

as well, since it gives the programmer the freedom to optimize the implementation
without interfering with the client code. Sealing off the object’s implementation
by means of a well-defined message interface moreover offers the opportunity to
endow an object with (possibly concurrent) autonomous behavior.

Features of OOP 14
information hiding: state, autonomous behavior

data abstraction: emphasis on what rather than how
dynamic binding: binding at runtime, polymorphism

inheritance: incremental changes (specialization), reusability

Slide 1-4: Features of OOP

The flexible dispatching behavior of objects that lends objects their polymor-
phic behavior is due to the dynamic binding of methods to messages. Polymorphic
object behavior is effected by using methods, or in C++ jargon wvirtual functions,
for which, in contrast to ordinary functions, the binding to an actual function
takes place at runtime and not at compile-time. In this way, inheritance provides
a flexible mechanism by which to reuse code since a derived class may specialize
or override parts of the inherited specification.

Encapsulation and inheritance Object-oriented languages offer encapsulation
and inheritance as the major abstraction mechanisms to be used in program devel-
opment. See slide [=3. Encapsulation promotes modularity, meaning that objects
must be regarded as the building blocks of a complex system. Once a proper
modularization has been achieved, the implementor of the object may postpone
any final decisions concerning the implementation at will. This feature allows
for quick prototyping, with the risk that the ‘quick and dirty’ implementations
will never be cleaned up. However, experience with constructing object-oriented
libraries and frameworks has shown that the modularization achieved with objects
may not be very stable. Another advantage of an object oriented approach, often
considered to be the main advantage, is the reuse of code. Inheritance is an
invaluable mechanism in this respect, since the code that is reused seldom offers
all that is needed. The inheritance mechanism enables the programmer to modify
the behavior of a class of objects without requiring access to the source code.

Although an object-oriented approach to program development indeed offers
great flexibility, some of the problems it addresses are intrinsically difficult and
cannot really be solved by mechanisms alone. For instance, modularization is rec-
ognized to be a notoriously difficult problem in the software engineering literature.
Hence, since some of the promises of OOP depend upon the stability of the chosen
modularization, the real advantage of OOP may be rather short-lived. Moreover,
despite the optimistic claims about ‘tuning’ reused code by means of inheritance,
experience shows that often more understanding of the inherited classes is needed
than is available in their specification.

6 Introduction

OO = encapsulation + inheritance 1.5

benefits of OOP

e modularity — autonomous entities, cooperation through exchanges
of messages

e deferred commitment — the internal workings of an object can be
redefined without changing other parts of the system

e reusability — refining classes through inheritance

e naturalness — object-oriented analysis / design, modeling

Slide 1-5: Benefits of OOP

The probability of arriving at a stable modularization may increase when
shifting focus from programming to design. The mechanisms supported by OOP
allow for modeling application oriented concepts in a direct, natural way. But this
benefit of OOP will only be gained at the price of increasing the design effort.

1.1.2 Object computation

Programming is, put briefly, to provide a computing device with the instructions
it needs to do a particular computation. In the words of Dijkstra: ‘Programming
is the combination of human reasoning and symbol manipulation skills used to
develop symbol manipulators (programs). By supplying a computer to such a
symbol manipulator it becomes a concrete one.’ Although we are by now used to
quite fashionable computing devices, including graphic interfaces and multimedia
peripherals, the abstract meaning of a computing device has not essentially altered
since the original conception of the mathematical model that we know as the
Turing machine (see below). Despite the fact that our basic mathematical model
of a computing device (and hence our notion of computability) has not altered
significantly, the development of high level programming languages has meant a
drastic change in our conception of programming. Within the tradition of impera-
tive programming, the introduction of objects, and object-oriented programming,
may be thought of as the most radical change of all. Indeed, at the time of
the introduction of Smalltalk, one spoke of a true revolution in the practice of
programiing.

The object model introduced by Smalltalk somehow breaks radically with
our traditional notion of computation. Instead of regarding a computation as
the execution of a sequence of instructions (changing the state of the machine),
object-based computation must be viewed as sending messages between objects.
Such a notion of computation had already been introduced in the late 1960s in
the programming language Simula (see Dahl and Nygaard, 1966). Objects were
introduced in Simula to simulate complex real-world events, and to model the
interactions between real-world entities. In the (ordinary) sequential machine
model, the result of a computation is (represented by) the state of the machine at

Themes and variations 7

the object model

e computation is sending messages between objects e
message
e object method arguments
encapsulation
e objects encapsulate data and procedures
protocol

e the collection of messages an object supports

Slide 1-6: The object model

the end of the computation. In contrast, computation in the object model is best
characterized as cooperation between objects. The end result then consists, so to
speak, of the collective state of the objects that participated in the computation.
See slide 8.

Operationally, an object may be regarded as an abstract machine capable
of answering messages. The collection of messages that may be handled by an
object is often referred to as the protocol obeyed by the object. This notion was
introduced in the Smalltalk programming environment originally to provide the
means to group the messages to which an object may respond. For instance, the
distinction between methods for initialization and methods for modification or
processing may be convenient in developing or using a program. The notion of
protocol may also be given a more formal interpretation, as has been done for
instance in the notion of contracts (introduced in Eiffel) stating the requirements
that must be adhered to in communicating with an object. Structurally, an object
may be regarded as a collection of data and procedures. In principle, the data
are invisible from the outside and may be manipulated only by invoking the
right procedure. In a pure object-oriented language such as Smalltalk and Eiffel,
sending a message to an object is the only way of invoking such a procedure.
Combined, data-hiding and message interface abstraction will be referred to as
encapsulation. Actually, object-oriented languages, while in some way supporting
objects as collections of data and procedures, may differ subtly in the degree and
way in which they support data-hiding and abstraction.

Computability and complexity Mathematically, a computing device consists
of a finite table of instructions and a possible infinite memory in which to store
intermediate results. In order to perform a computation the device also needs
an input and some means by which to display the results. For now, we need not
be concerned with the precise mathematical details of our model of a computing
device. For a very much more precise and elaborate description of the Turing
machine, the interested reader is referred to [Hopcroft]. What is important,
however, is that this model captures in a very precise sense the notion of com-

8 Introduction

putation, in that it allows us to characterize what can be computed, and also
what a computation will cost, in terms of computing time and memory usage.
An interesting, but perhaps somewhat distressing, feature of the Turing machine
model is that it is the strongest model we have, which means that any other
model of computation is at best equivalent to it. Parallel computation models in
effect do extend the power of (sequential) Turing machines, but only in a linear
relation with the number of processors. In other words, the Turing machine
defines what we may regard as computable and establishes a measure of the
complexity of a computation, in space and time. The awareness of the intrinsic
limitations imposed by a precise mathematical notion of computability has, for
example, led us to regarding the claims of artificial intelligence with some caution,
see [Rabin74]. However, the theoretical insight that a problem may in the worst
case not be solved in finite time or space should not hinder us in looking for
an optimal, approximate solution that is reachable with bounded resources. An
equally important feature of the Turing machine model is that it gives us an
illustration of what it means to program a computing device, that is to instruct
the machine to perform actions dependent on its input and state. As an extension
to the model, we can easily build a universal computing device, into which we
may feed the description of some particular machine, in order to mimic the
computation of that machine. Apparently, this gives us a more powerful machine.
However, this has proven not to be the case. Neither does this universal device
enlarge the class of computable problems, nor does it affect in any significant

sense the computational complexity of what we know to be computable. See slide
29

Computing devices 1-7

e mathematical model — Turing machine
e universal machine — machines as programs
e computability & complexity — time/space bounded

Object-oriented programming does not enlarge the class of computable
problems, nor does it reduce the computational complexity of the
problems we can handle.

Slide 1-7: Computing devices

Interestingly, there is an extension of the (basic and universal) Turing machine
model that allows us to extend the narrow boundaries imposed by a mathematical
characterization of computability. This extension is known as an oracle machine,
and as the name suggests, the solution to an (otherwise) intractable problem
must come from some external source, be it human, machine-like or divine (which
is unlikely). Partly, this explains why intelligent systems (such as automatic
translation systems) are, to a certain extent, intrinsically interactive, since only
the human user can provide the (oracle) information needed to arrive at a solution.
Our model of a computing device does quite precisely delimit the domain of com-

Themes and variations 9

putable problems, and gives us an indication of what we can expect the machine
to do for us, and what not. Also, it illustrates what means we have available to
program such a device, in order to let it act in the way we want. Historically, the
Turing machine model may be regarded as a mathematical description of what is
called the Von Neumann machine architecture, on which most of our present-day
computers are based. The Von Neumann machine consists of a memory and a
processor that fetches data from the memory, does some computation and stores
the data back in memory. This architecture has been heavily criticized, but no
other model has yet taken its place. This criticism has been motivated strongly
by its influence on the practice of programming. Traditionally, programs for the
Von Neumann architecture are conceived as sequences of instructions that may
modify the state of the machine. In opposition to this limited, machine-oriented
view of programming a number of proposals have been made that are intended
to arrive at a more abstract notion of programming, where the machine is truly
at the service of the programmer and not the other way around. One of these
proposals to arrive at a more abstract notion of programming is advocated as
the object-oriented approach. Before studying the intrinsics of the object-oriented
approach, however, it may be useful to reflect on what we may expect from it. Do
we hope to be able to solve more problems, or to solve known problems better? In
other words, what precisely is the contribution of an object-oriented approach?
Based on the characterization of a computing device, some answers are quite
straightforward. We cannot expect to be able to solve more problems, nor can we
expect to reduce the computational complexity of the problems that we can solve.
What an object-oriented approach can contribute, however, is simply in providing
better means with which to program the machine. Better means, to reduce the
chance of (human) errors, better means, also, to manage the complexity of the
task of programming (but not to reduce the computational complexity of the
problem itself). In other words, by providing abstractions that are less machine
oriented and more human oriented, we may enlarge the class of problems that
we can tackle in the reality of software engineering. However, we simply cannot
expect that an object-oriented approach may in any sense enlarge our notion of
what is computable.

Some history In the last few decades, we have been able to witness a rapid
change in the technology underlying our computer systems. Simultaneously, our
ideas of how to program these machines have changed radically as well.

The history of programming languages may be regarded as a progression from
low level constructs towards high level abstractions, that enable the programmer
to specify programs in a more abstract manner and hence allow problem-related
abstractions to be captured more directly in a program. This development to-
wards high level languages was partly motivated by the need to be able to verify
that a program adequately implemented a specification (given in terms of a
formal description of the requirements of an application). Regarded from this
perspective, it is then perhaps more appropriate to speak of a progression of
paradigms of programming, where a paradigm must be understood as a set of
mechanisms and guidelines telling us how to employ these mechanisms. The

10 Introduction

first abstraction mechanism beyond the level of assembler language and macros
is provided by procedures. Procedures play an important role in the method of
stepwise refinement introduced by the school of structured programming. Step-
wise refinement allows the specification of a complex algorithm gradually in
more and more detail. Program verification amounts to establishing whether
the implementation of an algorithm in a programming language meets its spec-
ification given in mathematical or logical terms. Associated with the school of
structured programming is a method of verification based on what has become
known as Hoare logic, which proceeds by introducing assertions and establishing
that procedures meet particular pre- and post-conditions. Other developments
in programming language research are aimed at providing ways in which to
capture the mathematical or logical meaning of a program more directly. These
developments have resulted in a number of functional programming languages
(e.g. ML, Miranda) and logic programming languages, of which Prolog is the
best-known. The programming language Lisp may in this respect also be regarded
as a functional language. The history of object-oriented programming may be
traced back to a concern for data abstraction, which was needed to deal with
algorithms that involved complex data structures. The notion of objects, originally
introduced in Simula (Dahl and Nygaard, 1966), has significantly influenced
the design of many subsequent languages (e.g. CLU, Modula and Ada). The
first well-known object-oriented language was Smalltalk, originally developed to
program the Dynabook, a kind of machine that is now familiar to us as a laptop
or notebook computer. In Smalltalk, the data-hiding aspect of objects has been
combined with the mechanism of inheritance, allowing the reuse of code defining
the behavior of objects. The primary motivation behind Smalltalk’s notion of
objects, as a mechanism to manage the complexity of graphic user interfaces, has
now proven its worth, since it has been followed by most of the manufacturers
of graphic user interfaces and window systems. Summarizing, from a historical
perspective, the introduction of the object-oriented approach may be regarded as
a natural extension to previous developments in programming practice, motivated
by the need to cope with the complexity of new applications. History doesn’t stop
here. Later developments, represented by Eiffel, C++ (to a certain extent) and
Java, more clearly reflect the concern with abstraction and verification, which
intrinsically belongs to the notion of abstract data types as supported by these
languages.

1.1.3 Design by Contract

After this first glance at the terminology and mechanisms employed in object-
oriented computation, we will look at what I consider to be the contribution of an
object-oriented approach (and the theme of this book) in a more thematic way.
The term ‘contract’ in the title of this section is meant to refer to an approach
to design that has become known as design by contract, originally introduced in
[Meyer88], which is closely related to responsibility-driven design (see Wirfs-Brock,
1989). Of course, the reader is encouraged to reflect on alternative interpretations
of the phrase responsibilities in OOP.

Themes and variations 11

The approach captured by the term contract stresses the importance of an
abstract characterization of what services an object delivers, in other words what
responsibilities an object carries with respect to the system as a whole. Contracts
specify in a precise manner the relation between an object and its ‘clients’.

Objects allow one to modularize a system in distinct units, and to hide the
implementation details of these units, by packaging data and procedures in a
record-like structure and defining a message interface to which users of these units
must comply. Encapsulation refers to the combination of packaging and hiding.
The formal counterpart of encapsulation is to be found in the theory of abstract
data types. An abstract data type (ADT) specifies the behavior of an entity in
an abstract way by means of what are called operations and observations, which
operationally amount to procedures and functions to change or observe the state
of the entity. See also section ??7. Abstract data types, that is elements thereof,
are generally realized by employing a hidden state. The state itself is invisible,
but may be accessed and modified by means of the observations and operations
specified by the type. See slide ?77.

Encapsulation 1-8

e abstract data types

ADT = state + behavior

Object-oriented modeling

e data oriented

Slide 1-8: Abstract data types — encapsulation

Complex applications involve usually complex data. As observed by [Wirfs89],
software developers have reacted to this situation by adopting more data oriented
solutions. Methods such as semantic information modeling and object-oriented
modeling were developed to accommodate this need. See also sections 77?7

and ??. Objects may be regarded as embodying an (element of an) abstract
data type. To use an object, the client only needs to know what an object does,
not (generally speaking) how the behavior of the object is implemented. However,
for a client to profit from the data hiding facilities offered by objects, the developer
of the object must provide an interface that captures the behavior of the object
in a sufficiently abstract way. The (implicit) design guideline in this respect must
be to regard an object as a server that provides high level services on request and
to determine what services the application requires of that particular (class of)
object(s). See slide ?7.

Naturally, the responsibilities of an object cannot be determined by viewing
the object in isolation. In actual systems, the functionality required is often depen-
dent on complex interactions between a collection of objects that must cooperate
in order to achieve the desired effect. However, before trying to specify these

12 Introduction

Responsibilities 1-9
e to specify behavior | what rather than how |
Client ‘ client/server model ‘

e makes request to perform a service

Server

e provides service upon request

Slide 1-9: Responsibilities in OOP

interactions, we must indicate more precisely how the communication between a
server and a single client proceeds.

From a language implementation perspective, an object is nothing but an
advanced data structure, even when we fit it in a client-server model. For design,
however, we must shift our perspective to viewing the object as a collection of
high level, application-oriented services. Specifying the behavior of an object
from this perspective, then, means to define what specific information the object

is responsible for and how it maintains the integrity of that information. See slide
??

object = information + responsibilities

Contracts

e a set of services

Behavioral refinement

e improving contracts

Slide 1-10: Contracts and behavioral refinement

The notion of contracts was introduced by [Meyer88| to characterize in a
precise manner what services an object must provide and what requirements
clients of an object must meet in order to request a service (and expect to get
a good result). A contract specifies both the requirements imposed on a client
and the obligations the server has, provided the requirements are met. When
viewed from the position of a client, a contract reveals what the client can count
on when the requirements are fulfilled. From the position of the server, on the
other hand, when a client does not fulfill the requirements imposed, the server
has no obligation whatsoever.

Formally, the requirements imposed on the client and the obligations of the
server can be specified by means of pre- and post-conditions surrounding a method.
Nevertheless, despite the possibility of formally verifying these conditions, the

Themes and variations 13

designer must specify the right contract for this approach to work at all. A
problem of a more technical nature the designer of object-oriented systems faces
is how to deal with inheritance.

Inheritance, as a mechanism of code reuse, supports the refinement of the
specification of a server. From the perspective of abstract data types, we must
require that the derived specification refines the behavior of the original server.
We must answer the following two questions here. What restrictions apply, when
we try to refine the behavior of a server object? And, ultimately, what does it
mean to improve a contract?

Behavioral refinement Inheritance provides a very general and powerful mech-
anism for reusing code. In fact, the inheritance mechanism is more powerful than
is desirable from a type-theoretical perspective.

Conformance — behavioral refinement

if B refines A then B may be used wherever A is allowed

Slide 1-11: Behavioral refinement

An abstract data type specifies the behavior of a collection of entities. When
we use inheritance to augment the definition of a given type, we either specify
new behavior in addition to what was given, or we modify the inherited behavior,
or both. The restriction that must be met when modifying behavior is that the
objects defined in this way are allowed to be used at all places where objects of the
given type were allowed. This restriction is expressed in the so-called conformance
rule that states that if B refines A then B may be used wherever A is allowed.
Naturally, when behavior is added, this condition is automatically fulfilled. See
slide 77.

The conformance rule gives a very useful heuristic for applying inheritance
safely. This form of inheritance is often called ‘strict’ inheritance. However, it is
not all that easy to verify that a class derived by inheritance actually refines the
behavior specified in a given class. Partly, we can check for syntactic criteria such
as the signature (that is, type) of the individual methods, but this is definitely
not sufficient. We need a way in which to establish that the behavior (in relation
to a possible) client is refined according to the standard introduced above. In
other words we need to know how to improve a contract.

Recall that from an operational point of view an object may be regarded
as containing data attributes storing information and procedures or methods
representing services. The question ‘how to improve a contract?’ then boils
down to two separate questions, namely: (1) ‘how to improve the information?’
and (2) ‘how to improve a service?’. To provide better information is, technically
speaking, simply to provide more information, that is more specific information.
Type-theoretically, this corresponds to narrowing down the possible elements of
the set that represents the (sub) type. To provide a better service requires either

14 Introduction

relieving the restrictions imposed on the client or improving the result, that is
tightening the obligations of the server. Naturally, the or must be taken as
non-exclusive. See slide ?77.

attributes

e more information

services

e better services

contracts

e more and better services

A better service
e fewer restrictions for the client

e more obligations for the server

Slide 1-12: Improving services

To improve a contract thus simply means adding more services or improving
the services that are already present. As a remark, [Meyer88] inadvertently uses
the term subcontract for this kind of refinement. However, in my understanding,
subcontracting is more a process of delegating parts of a contract to other con-
tractors whereas refinement, in the sense of improving contracts, deals with the
contract as a whole, and as such has a more competitive edge.

Summarizing, at a very high level we may think of objects as embodying a
contract. The contract is specified in the definition of the class of which that
object is an instance. Moreover, we may think of inheritance as a mechanism
to effect behavioral refinement, which ultimately means to improve the contract
defining the relation between the object as a server and a potential client.

Object-oriented modeling

e prototyping, specification, refinement, interactions

OOP = Contracts + Refinements

Slide 1-13: Object-oriented modeling

To warrant the phrase contract, however, the designer of an object must specify
the functionality of an object in a sufficiently abstract, application-oriented way.
The (implicit) guideline in this respect is to construct a model of the application
domain. See slide ?77.

Paradigms of programming 15

The opportunity offered by an object-oriented approach to model concepts of
the application domain in a direct way makes an object-oriented style suitable for
incremental prototyping (provided that the low-level support is available).

The metaphor of contracts provides valid guidelines for the design of objects.
Because of its foundation in the theory of abstract data types, contracts may be
specified (and verified) in a formal way, although in practice this is not really
likely to occur.

Before closing this section, I wish to mention a somewhat different interpre-
tation of the notion of contracts which is proposed by [HHG90]. There contracts
are introduced to specify the behavior of collections of cooperating objects. See
section ?77.

1.2 Paradigms of programming
In a landmark paper with the title ‘What is object-oriented programming?’ Bjarne

Stroustrup raises the question of when a language may be considered to support
a particular style of programming, [St88]. See slide ?7.

Object-oriented programming 1-14

e high tech synonym for good

Styles of programming

e A language supports a style of programming if it provides facilities
that make it convenient (easy, safe and efficient) to use that style

e compile/runtime checks

e clean interpretation/ orthogonal / efficient / minimal

Slide 1-14: Styles of programming

In general, one can say that a language supports a particular style of program-
ming if it provides facilities, both syntactic and semantic, that makes it convenient
(that is easy, safe and efficient) to use that style. The crucial distinction that must
be made in this context is that between allowing a certain style and providing
support for that style. Allowing means that it is possible to program in that style.
To support a given style, however, requires in addition that suitable compile and
runtime checks are provided to enforce a proper use of the relevant language
constructs. With these considerations in mind, one could question the assertion
that Ada is object-oriented or that Modula supports abstract data types. Naturally,
this attitude backfires with C++. Does C++ support abstract data types and is
it really object-oriented?

It is equally important to establish whether a language allows a clean inter-
pretation of the constructs introduced, whether the constructs supporting object
orientation are orthogonal to (that is independent of) the other constructs of the

16 Introduction

Procedural programming

e procedures, use the optimal algorithms

Modules

e hide the data, provide functional abstractions

Data abstraction

e types, provide a sufficiently complete set of operations

Object-oriented — organize your types

e make commonality explicit

Slide 1-15: Paradigms of programming

language, whether an efficient implementation of these constructs is possible, and
whether the language is kept minimal, that is without superfluous constructs.

Before establishing what the main ingredients of object-orientation are, let
us briefly look at some of the styles of programming that may be considered as
leading to an object-oriented style. See slide 77.

In his article, Stroustrup (1988) stresses the continuity between the respec-
tive styles of programming pictured in slide ??. Each style is captured by a
short phrase stating its principal concern, that is guidelines for developing good
programs.

1.2.1 Procedural programming

The procedural style of programming is most closely related to the school of
structured programming, of which for instance [Dijkstra76] and [Gries] are
important proponents. The procedural style supports a method of program
development that is known as stepwise refinement. Stepwise refinement is an
important heuristic for developing complex algorithms. Instead of writing out a
complex algorithm in all its detail, the method allows for refining the elementary
steps of the basic algorithm by means of increasingly detailed procedures.

As a playful example of this style of programming, consider the fragment that
may be found on the cover of [Knuth92]. See slide ??. Ignoring the contents,
clearly the structure shows an algorithm that is conceived as the repeated execu-
tion of a number of less complex steps.

1.2.2 Data abstraction

When programs became larger and data more complex, the design of correct
algorithms was no longer the primary concern. Rather, it became important
to provide access to data in a representation independent manner. One of the
early proponents of data hiding was, see [Parnas72a] and [Parnas72b], who

Paradigms of programming 17

while (programming == art) {

—~

incr
decr
incr
incr
incr
incr

pleasure);

bugs);
portability);
maintainability);
quality);

salary);

—~

~ NN~

} // live happily ever after

Slide 1-16: Programming as an art

introduced a precursor to the notion of data abstraction as it has become popular
in object-oriented languages such as Smalltalk or C++.

As a language that supports data hiding, we may think of Modula-2 that offers
strong support for modules and the specification of import and export relations
between modules. Also the package construct of Ada provides support for data
hiding. See slide 77.

Modules as provided by Modula-2 and Ada give a syntactic means for decom-
posing a program into more or less independent components. It is precisely the
purely syntactic nature of modules that may be considered the principal defect
of this approach to data hiding. Semantically, modules provide no guideline with
respect to how to decompose a program into meaningful components.

Support for data abstraction

o Abstract Data Types — encapsulation

Encapsulation
e initialization
e protection

e coercions

Slide 1-17: Data abstraction

To express the meaning of a module, we need the stronger notion of types, in
the sense of abstract data types which are characterized by a set of operations.
The notion of types as for example supported in CLU, [Liskov74], enables us
to determine whether our decomposition satisfies certain formal criteria. For
instance, we may ask whether we have defined sufficiently many operations for a
given type and whether we have correctly done so. An important advantage of

18 Introduction

using abstract data types is that we can often find a mathematical model that
formally characterizes the behavior of that type. From the perspective of formal
methods, data abstraction by means of abstract data types may be considered
as one of the principal means for the specification and verification of complex
software systems. See also sections 7?7 and ?77.

From an implementation perspective, to support data abstraction a language
must provide constructs to implement concrete realizations of abstract data types.
Such support requires that means are provided to create and initialize elements
of a concrete type in a safe way, and that vulnerable data is effectively protected.

Very important is the possibility of defining generic types, that is types which
take a (type) parameter with which they are instantiated. For example, the
definition of a stack does not differ for a stack of integers, a stack of strings or a
stack of elements from an arbitrary user-defined type.

1.2.3 Object-oriented programming

There is a close similarity between the object model as presented earlier and the
notion of abstract data types just described. Both objects and abstract data types
define a set of applicable operations that completely determine the behavior of
an object or an element of the data type. To relate an object to an abstract data
type we need the notion of class, that serves as the description on an abstract level
of the behavior of (a collection of) objects. (The objects are called the instances
of the class.)

As noted in [St88], abstract data types as such, although mathematically
satisfying, are rather inflexible and inconvenient for specifying complex software
systems. To attain such flexibility, we need to be able to organize our types and
express the commonality between them. The notion of class supports this by
a mechanism called inheritance. When regarding classes as types, inheritance
may be seen as introducing polymorphic types. A class that is derived from a
particular class (the base class) may be treated by the compiler as a subtype of
(the type of) that particular class. See slide ?7.

Support for OOP

e Polymorphism — inheritance

Inheritance
e dynamic binding
e protection

e multiple inheritance

Slide 1-18: Support for OOP

Operationally, the power of inheritance comes from message dispatching. This
mechanism is called dynamic binding. Message dispatching takes care of selecting

The object-oriented software life-cycle 19

the right method in response to a message or method call. In a hierarchy of
(derived) classes, a method for an object may be either defined within the class
of the object itself or by one of the classes from which that class is (directly or
indirectly) derived. Message dispatching is an essential mechanism for supporting
polymorphism, since it allows to choose the most appropriate behavior for an
object of a given type. This must occur at runtime, since the type of an object
as determined at compile-time may be too general.

An important issue in determining whether a language supports object-oriented
programming is whether it offers a protection mechanism to shield the vulnerable
parts of a base class from the classes that derived from that class.

Another question of interest is whether a language must support multiple
inheritance. Clearly, there is some disagreement on this issue. For example,
Smalltalk-80 and Java do not support multiple inheritance. The Eiffel language,
on the other hand, supported multiple inheritance from its first days. For C++,
multiple inheritance was introduced at a later stage. At first, it was thought to
be expensive and not really necessary. Closer analysis, however, revealed that the
cost was not excessive. (See Ellis and Stroustrup, 1990.) The issue of multiple
inheritance is still not resolved completely. Generally, it is acknowledged to be a
powerful and at the same time natural extension of single inheritance. However,
the inheritance mechanism itself seems to be under attack. Some doubt remains
as to whether inheritance is a suitable composition mechanism when regarded
from the perspective of reuse and reliability. An elegant solution is provided by
Java which offers multiple interface inheritance, by allowing multiple interfaces to
be realized by an actual class.

1.3 The object-oriented software life-cycle

No approach to software development is likely to survive unless it solves some of
the real problems encountered in software engineering practice. In this section
we will examine how the object-oriented approach is related to the conceptions
of the life-cycle of software and what factors may motivate the adoption of an
object-oriented approach to software development.

Despite some variations in terminology, there is a generally agreed-on concep-
tion of the various phases in the development of a software product. Roughly,
a distinction can be made between a phase of analysis, which aims at specifying
the requirements a product must meet, a phase of design, which must result in
a conceptual view of the architecture of the intended system, and a phase of
implementation, covering coding, testing and, to some extent, also maintenance
activities. See slide ?77.

No such consensus exists with respect to the exact relation between these
phases. More specifically, there is a considerable variation in methods and guide-
lines describing how to make the transition from one phase to another. Another
important issue is to determine what the products are exactly, in terms of software
and documentation, that must result from each phase.

The traditional conception of the software life-cycle is known as the waterfall

20 Introduction

The software life-cycle
e Analysis — Conceptual Model, System Requirements
e Design — System Design, Detailed Design
e Implementation — Coding, Testing

With an increase in the number of software products not satisfying user
needs, prototyping has become quite popular!

Slide 1-19: The software life-cycle

model, which prescribes a strictly sequential transition between the successive
phases, possibly in an iterative manner. Strict regulations with respect to vali-
dation of the products resulting from each phase may be imposed to avoid the
risk of backtracking. Such a rigid approach, however, may cause severe problems,
since it does not easily allow for modifying decisions taken earlier.

One important problem in this respect is that the needs of the users of a system
may change over time, invalidating the requirements laid down in an earlier phase.
To some extent this problem may be avoided by better techniques of evoking the
user requirements in the analysis phase, for instance by developing a prototype.
Unfortunately, the problem of accommodating changing user needs and adapting
to changing circumstances (such as hardware) seems to be of a more persistent
nature, which provides good reason to look at alternative software development
models.

Software development models The software engineering literature abounds
with descriptions of failing software projects and remedies proposed to solve the
problem of software not meeting user expectations.

User expectations may be succinctly characterized by the RAMP requirements
listed in slide ??7. Reliability, adaptability, maintainability and performance are
not unreasonable demands in themselves. However, opinions on how to satisfy
these criteria clearly diverge.

Requirements — user needs 1-20

e Reliability — incremental development, reuse, synthesis
e Adaptability — evolutionary prototyping
e Maintainability — incremental development, synthesis

e Performance — incremental development, reuse

Slide 1-20: Requirements — RAMP

[Bersoff91] and [Davis88] explain how the choice of a particular software de-
velopment model may influence the chances of successfully completing a software
project. As already mentioned, rapid throwaway prototyping may help to evoke

The object-oriented software life-cycle 21

user needs at an early stage, but does not help much in adapting to evolving
user requirements. A better solution in this respect is to adopt a method of
evolutionary prototyping. Dependent on the technology used, however, this may
cause severe problems in maintaining the integrity and robustness of the system.
Less flexible but more reliable is an approach of incremental development, which
proceeds by realizing those parts of a system for which the user requirements can
be clearly specified.

Another means of adapting to changing user requirements is to use a technique
of automated software synthesis. However, such an approach works only if the user
requirements can be formalized easily. This is not always very likely, unless the
application domain is sufficiently restricted. A similar constraint adheres to the
reuse of software. Only in familiar application domains is it possible to anticipate
how user requirements may change and how to adapt the system appropriately.
Nevertheless, the reuse of software seems a very promising technique with which
to reduce the cost and time involved in software products without (in principle)
sacrificing reliability and performance. See slide ?77.

Software development models 1-21

e rapid throwaway prototyping — quick and dirty

e incremental development — slowly evolving

e evolutionary prototyping — evolving requirements
e reusable software — reduces cost and time

e automated software synthesis — one level of abstraction higher

Slide 1-21: Software development models

Two of the early advocates of object-oriented technology, Cox and Meyer, re-
gard the reuse of software as the ultimate solution to the software crisis. However,
the true solution is in my opinion not so straightforward. One problem is that
tools and technologies are needed to store and retrieve reusable components. That
simple solutions do not suffice is illustrated by an anecdote reported by Alan Kay
telling how difficult it was to find his way in the Smalltalk class structure after a
significant change, despite the browsing facilities offered by the Smalltalk system.

Another problem lies in the area of human factors. The incentives for pro-
grammer productivity have too long been directed at the number of lines of code
to make software reuse attractive. This attitude is also encouraged in universities.
Moreover, the reuse of other students’ work is usually (not unjustifiably) punished
instead of encouraged.

However, having a sufficiently large store of reusable software at our disposal
will allow us to build software meeting the RAMP requirements stated above, only
if we have arrived at sufficiently stable abstractions of the application domain.

In the following, we will explore how object-oriented technology is motivated
by problems occurring in the respective phases of the software life-cycle and how

22 Introduction

it contributes to solving these problems.

1.3.1 Analysis

In academic environments software often seems to grow, without a clear plan or
explicit intention of fulfilling some need or purpose, except perhaps as a vehicle
for research. In contrast, industrial and business software projects are usually
undertaken to meet some explicit goal or to satisfy some need.

One of the main problems in such situations, from the point of view of the
developers of the software, is to extract the needs from the future users of the
system and later to negotiate the solutions proposed by the team. The problem is
primarily a problem of communication, of bridging the gap between two worlds,
the world of domain expertise on the one hand and that of expertise in the craft
of software development on the other.

In a number of publications (Coad and Yourdon, 1991a; Wirfs-Brock et al.,
1990; and Meyer, 1988) object-oriented analysis has been proposed as providing a
solution to this problem of communication. According to [CY90], object-oriented
techniques allow us to capture the system requirements in a model that directly
corresponds with a conceptual model of the problem domain. See slide ?7.

Object-Oriented Analysis 1-22

e analysis = extracting the needs
The problem domain — complex reality
Communication — with domain experts

Continual change — user requirements
Reuse — of analysis results

Slide 1-22: Object-oriented analysis

Another claim made by proponents of OOP is that an object-oriented ap-
proach enables a more seamless transition between the respective phases of the
software life-cycle. If this claim is really met, this would mean that changing
user requirements could be more easily discussed in terms of the consequences of
these changes for the system, and if accepted could in principle be more easily
propagated to the successive phases of development.

One of the basic ideas underlying object-oriented analysis is that the ab-
stractions arrived at in developing a conceptual model of the problem domain
will remain stable over time. Hence, rather than focusing on specific functional
requirements, attention should be given to modeling the problem domain by
means of high level abstractions. Due to the stability of these abstractions, the
results of analysis are likely candidates for reuse.

The reality to be modeled in analysis is usually very complex. [CY90]
mention a number of principles or mechanisms with which to manage complexity.
These show a great similarity to the abstraction mechanisms mentioned earlier.

Personally, I do not feel entirely comfortable with the characterization of
the analysis phase given by [CY90], since to my mind user needs and system

The object-oriented software life-cycle 23

requirements are perhaps more conveniently phrased in terms of functionality
and constraints than in terms of a model that may simultaneously act as an
architectural sketch of the system that is to be developed.

However, I do agree with [CY90], and others, that the products of analysis,
that is the documents describing user needs and system requirements, should as
far as possible provide a conceptual model of the domain to which these needs
and requirements are related.

Actually, I do consider the blurring of the distinction between analysis and
design, and as we will see later, between design and implementation, as one of
the attractive features of an object-oriented approach.

Analysis methods The phases of analysis and design differ primarily in orien-
tation: during analysis the focus is on aspects of the problem domain and the
goal is to arrive at a description of that domain to which the user and system
requirements can be related. On the other hand, the design phase must result in
an architectural model of the system, for which we can demonstrate that it fulfills
the user needs and the additional requirements expressed as the result of analysis.

Analysis methods 1-23

e Functional Decomposition = Functions + Interfaces

e Data Flow Approach = Data Flow + Bubbles

e Information Modeling = Entities + Attributes + Relationships
e Object-Oriented = Objects 4+ Inheritance + Message passing

Slide 1-23: Analysis methods

[CY90] discuss a number of methods that are commonly used in analysis (see
slide ??). The choice of a particular method will often depend upon circumstances
of a more sociological nature. For instance, the experience of a team with a
particular method is often a crucial factor for success. For this reason, perhaps,
an eclectic method combining the various approaches may be preferable (see,
for instance, Rumbaugh et al., 1991). However, it is doubtful whether such an
approach will have the same benefits as a purely object-oriented approach. See
also section ?77.

I will briefly characterize the various methods mentioned by [CY90]. For
a more extensive description and evaluation the reader is referred to, for exam-
ple, [Jones90].

The method of Functional Decomposition aims at characterizing the steps
that must be taken to reach a particular goal. These steps may be represented
by functions that may take arguments in order to deal with data that is shared
between the successive steps of the computation. In general, one can say that
this method is not very good for data hiding. Another problem is that non-expert
users may not be familiar with viewing their problem in terms of computation

24 Introduction

steps. Also, the method does not result in descriptions that are easily amenable
to change.

The method indicated as the Data Flow Approach aims at depicting the
information flow in a particular domain by means of arrows that represent data
and bubbles that represent processes acting on these data.

Information Modeling is a method that has become popular primarily for de-
veloping information systems and applications involving databases. As a method,
it aims at modeling the application domain in terms of entities, that may have
attributes, and relations between entities.

An object-oriented approach to analysis is very similar in nature to the in-
formation modeling approach, at least with respect to its aim of developing a
conceptual model of the application domain. However, in terms of their means,
both methods differ significantly. The most important distinction between objects,
in the sense of OOP, and entities, as used in information modeling, to my mind
lies in the capacity of objects to embody actual behavior, whereas entities are of
a more passive nature. Concluding this brief exploration of the analysis phase, 1
think we may safely set as the goal for every method of analysis to aim at stable
abstractions, that is a conceptual model which is robust with respect to evolving
user requirements. Also, we may state a preference for methods which result in
models that have a close correspondence to the concepts and notions used by
the experts operating in the application domain. With respect to notation UML
(the Unified Modeling Language, see Appendix ?7) is the obvious choice. How to
apply UML in the various phases of object-oriented software construction is an
altogether different matter.

1.3.2 Design

In an object-oriented approach, the distinction between analysis and design is
primarily one of emphasis; emphasis on modeling the reality of the problem
domain versus emphasis on providing an architectural model of a system that
lends itself to implementation.

One of the attractive features of such an approach is the opportunity of a
seamless transition between the respective phases of the software product in devel-
opment. The classical waterfall model can no longer be considered as appropriate
for such an approach. An alternative model, the fountain model, is proposed
by [Hend92]. This model allows for a more autonomous development of software
components, within the constraints of a unifying framework. The end goal of such
a development process may be viewed as a repository of reusable components. A
similar viewpoint has originally been proposed by [Cox86] and [Meyer88].

In examining the primary goals of design, [Meyer88] distinguishes between
reusability, quality and ease of maintenance. Naturally, reusable software pre-
supposes quality, hence both quality and maintainability are important design
goals. See slide ??. In [Meyer88] a rough estimate is given of the shift in effort
between the phases of the software life-cycle, brought about by an object-oriented
approach. Essentially, these figures show an increase in the effort needed for
design. This is an immediate consequence of the observation that the development

The object-oriented software life-cycle 25

Object-Oriented Design 1-24

e design for maintenance and reuse!

Software quality

e correctness, robustness, extensibility, compatibility

Design projects
e IDA — Interior Design Assistant
e MASS — Multi-user Agenda Support System

Slide 1-24: Object-oriented design

of reusable code is intrinsically more difficult. To my mind, there is yet another
reason for the extra effort involved in design. In practice it appears to be difficult
and time consuming to arrive at the appropriate abstract data types for a given
application. The implementation of these structures, on the other hand, is usually
straightforward. This is another indication that the unit of reuse should perhaps
not be small pieces of code, but rather (the design of) components that fit into a
larger framework.

From the perspective of software quality and maintenance, these mechanisms
of encapsulation and inheritance may be characterized as powerful means to
control the complexity of the code needed to realize a system. In [Meyer88] it is
estimated that maintenance accounts for 70% of the actual cost of software. More-
over, adaptive maintenance, which is the adaptation to changing requirements,
accounts for a disproportionately large part of the cost. Of primary importance
for maintenance, in the sense of the correction of errors, is the principle of locality
supported by encapsulation, data abstraction and hiding. In contrast, inheritance
is a feature that may interfere with maintenance, since it often breaks down the
protection offered by encapsulation. However, to cope with changing require-
ments, inheritance provides both a convenient and relatively safe mechanism.

Design assignments

Actually designing systems is a complex activity, about which a lot can be said.
Nevertheless, to get a good feeling for what is involved in designing a system it is
best to gain some experience first. In the remainder of this subsection, you will
find the descriptions of actual software engineering assignments. The assignments
have been given, in subsequent years, to groups consisting of four or five CS2
students. The groups had to accomplish the assignments in five weeks, a total of
1000 man-hours. That includes formulating the requirements, writing the design
specification and coding the implementation. (For the first of the assignments,
IDA, C++ was used with the hush GUI library. For the second, MASS, Java
with Swing was used.) In both cases we allowed for an iterative development

26 Introduction

cycle, inspired by a Rapid Application Development (RAD) approach. These
assignments will be taken as a running example, in the sense that most examples
presented in the book solve in one way or another the problems that may occur
when realizing the systems described in the assignments.

1-25
IDA An Interior Design Assistant (IDA) is a tool to support an interior

design architect. When designing the interior of a house or building,
the architect proceeds from the spatial layout and a list of furniture
items. IDA must allow for placing furniture in a room. It will check for
constraints. For example placing a chair upon a table will be prohibited.
For each design, IDA must be able to give information with respect to
pricing and the time it takes to have the furniture items delivered. In
addition to the design facilities, IDA must also offer a showroom mode,
in which the various designs can be inspected and compared with respect
to price and delivery time.

Slide 1-25: IDA

MASS An Agenda Support System assists the user in maintaining a 1-26

record of important events, dates and appointments. It moreover offers
the user various ways of inspecting his or her agenda, by giving an
overview of important dates, an indication of important dates on a
calendar, and (more advanced) timely notification. A Multi-user Agenda
Support System extends a simple Agenda Support System by providing
facilities for scheduling a meeting, taking into account various constraints
imposed by the agendas of the participants, as for example a special event
for which a participant already has an entry in his or her agenda.

A minimal Multi-user Agenda Support System must provide facilities
for registering important dates for an arbitrary number of users. It
must, moreover, be able to give an overview of important dates for any
individual user, and it must be possible to schedule a meeting between
an arbitrary subset of users that satisfies the time-constraints for each
individual in that particular group. This minimal specification may be
extended with input facilities, gadgets for presenting overviews and the
possibility of adding additional constraints. Nevertheless, as a piece of
advice, when developing a Multi-user Agenda Support System, follow the
KISS principle: Keep It Simple ...

Slide 1-26: MASS

1.3.3 Implementation

In principle, the phase of implementation follows on from the design phase.
In practice, however, the products of design may often only be regarded as
providing a post hoc justification of the actual system. As noted, for instance,
in [HOBS87], an object-oriented approach may blur the distinction between design
and implementation, even to the extent of reversing their actual order. The most
important distinction between design and implementation is hence the level of

The object-oriented software life-cycle 27

abstraction at which the structure of the system is described. Design is meant
to clarify the conceptual structure of a system, whereas the implementation must
include all the details needed for the system to run. Whatever approach is
followed, in the end the design must serve both as a justification and clarification
of the actual implementation. Design is of particular importance in projects that
require long-term maintenance. Correcting errors or adapting the functionality
of the system on the basis of code alone is not likely to succeed. What may help,
though, are tools that extract explanatory information from the code.

Testing and maintenance Errors may (and will) occur during the implementa-
tion as well as later when the system is in operation. Apart from the correction of
errors, other maintenance activities may be required, as we have seen previously.

In [Knuth92], an amusing account is given of the errors Knuth detected in
the TEX program over a period of time. These errors range from trivial typos to
errors on an algorithmic level. See slide 77.

Errors, bugs 1-27
A - algorithm awry
B — blunder
C — structure debacle
F — forgotten function
L — language liability
M — mismatch between modules
R - reinforcement of robustness
S — surprises

T — a trivial typo

Slide 1-27: TEX errors and bugs

An interesting and important question is to what extent an object-oriented
approach, and more specifically an object-oriented implementation language, is
of help in avoiding and correcting such errors. The reader is encouraged to make
a first guess, and to verify that guess later.

As an interesting aside, the TEX system has been implemented in a language
system called Web. The Web system allows one to merge code and explanatory
text in a single document, and to process that document as either code or text.
In itself, this has nothing to do with object orientation, but the technique of
documentation supported by the Web system is also suitable for object-oriented
programs. We may note that the javadoc tool realizes some of the goals set for
the Web system, for Java.

Object-oriented language support Operationally, encapsulation and inheri-

28 Introduction

tance are considered to be the basic mechanisms underlying the object-oriented
approach. These mechanisms have been realized in a number of languages. (See
slide ??. See also chapter 5 for a more complete overview.)

Historically, Smalltalk is often considered to be the most important object-
oriented language. It has served as an implementation vehicle for a variety of
applications (see, for instance, Pope, 1991). No doubt, Smalltalk has contributed
greatly to the initial popularity of the object-oriented approach, yet its role is
being taken over by C++ and Java, which jointly have the largest community of
users. Smalltalk is a purely object-oriented language, which means that every
entity, including integers, expressions and classes, is regarded as an object. The
popularity of the Smalltalk language may be attributed partly to the Smalltalk
environment, which allows the user to inspect the properties of all the objects in
the system and which, moreover, contains a large collection of reusable classes.
Together with the environment, Smalltalk provides excellent support for fast
prototyping. The language Eiffel, described by [Meyer88], may also be considered
as a pure object-oriented language, pure in the sense that it provides classes and
inheritance as the main device with which to structure a program. The major
contribution of Eiffel is its support for correctness constructs. These include the
possibility to specify pre- and post-conditions for methods, as well as to specify
a class invariant, that may be checked before and after each method invocation.
The Eiffel system comes with a number of libraries, including libraries for graphics
and window support, and a collection of tools for browsing and the extraction of
documentation. The C++ language (Stroustrup, 1991) has a somewhat different
history. It was originally developed as an extension of C with classes. A primary
design goal of C++ has been to develop a powerful but efficient language. In
contrast to Smalltalk and Eiffel, C++ is not a pure object-oriented language; it is
a hybrid language in the sense that it allows us to use functions in C-style as well
as object-oriented constructs involving classes and inheritance.

The newest, and perhaps most important, object-oriented language around is
Java, which owes its popularity partly to its tight connection with the Internet.
Java comes with a virtual machine that allows for running Java programs (applets)
in a browser, in a so-called sandbox, which protects the user from possibly
malicious programs. As the final language in this brief overview, I wish to
mention the distributed logic programming language DLP (see Eliéns, 1992).
The DLP language combines logic programming with object-oriented features
and parallelism. I mention it, partly because the development of this language
was my first involvement with OOP. And further, because it demonstrates that
other paradigms of programming, in particular logic programming, may be fruit-
fully combined with OOP. The language DLP provides a high level vehicle for
modeling knowledge-based systems in an object-oriented way. A more extensive
introduction to the Smalltalk, Fiffel, C++, Java and DLP languages is given in
the appendix.

1.4. BEYOND OBJECT-ORIENTATION? 29

Smalltalk — a radical change in programming 1-28

e rapid prototyping

Eiffel — a language with assertions

e correctness

C++ - is much more than a better C
e the benefits of efficiency

Java - the dial-tone of the Internet

e security

DLP - introduces logic into object orientation

e development of knowledge-based systems

Slide 1-28: Object-oriented languages

1.4 Beyond object-orientation?

No introduction to object orientation is complete without an indication of the
trends and technologies that surround the field. The word trend should be
understood in its positive meaning of set examples and emerging guidelines.
And ‘technologies’; such as for example CORBA (the OMG Common Object
Request Broker Architecture), as those that set the technological landscape which
determines whether object-oriented approaches can be deployed effectively in
practice.

Trends — modeling 1-29

e patterns — examples of design

e UML — Unified Modeling Language

Technologies — components
e Web — global infrastructure

e CORBA/DCOM - the software bus

e Java — the platform?

Challenges

e Applications — Frameworks < Patterns

Slide 1-29: Trends and technologies

30 Introduction

At the design front, we may observe two dominant trends. The first may be
called the patterns movement, which came into the forefront after the publication
of Design Patterns, authored by a group of authors that is commonly known as
the ‘Gang of Four’, [GOF94]. The design patterns published there, and elsewhere
e.g. [Coplien95], may be regarded as the outcome of mining actual framework and
application designs for valid solutions that may be generalized to broader classes
of problems. Design patterns focus on understanding and describing structural
and behavioral properties of (fragments of) software systems. Equally focused
on understanding structure and behavior, but more from a modeling perspective,
is the Unified Modeling Language (UML), which has resulted from a common
effort of leading experts in object-oriented analysis and design, Grady Booch,
Ivar Jacobson and James Rumbaugh, also known as ‘The Three Amigos’. UML,
indeed the second trend, aims at providing the full notational repertoire needed for
modeling every conceivable structural and behavioral aspect of software systems.
An excellent introduction to UML is given in [Fowler97]. In Appendix ?? you
will find a brief introduction to the UML. With respect to technology, the field is
still very much in flux. A dominant factor here is the rapid increase in Internet
usage and, more in particular, the Web. The Web has boosted the interest of
the IT business world in the deployment of distributed object or component
technology to extend their range of business. Nevertheless, the very existence
of this infrastructure is in itself somewhat embarrassing, in that the Web and the
technology around which it is built is not object-oriented. Perhaps it should
be, but it simply isn’t. Our embarrassment is aggravated when we observe,
following [Szyperski97], that the technology which may change this, in casu
component software, is in itself not object-oriented but, paraphrasing the subtitle
of this excellent book, ‘beyond object orientation’. And even worse, object-oriented
approaches at framework development have failed more often than they have
succeeded, an observation which is confirmed by for example [Surviving]. Reading
this you may think that object-orientation is in a deplorable state, and close the
book. It isn’t. First of all, because in terms of modeling and design there is no
beyond object-orientation. And secondly, quoting Szyperski, ‘object-technology,
if harnessed carefully, is possibly one of the best ways to realize component
technology ...”. Well, believe me, it is the best way. Whether it is CORBA,
Microsof (D)COM or Java that will become the dominant component technology
is quite another issue; component technology that ignores the object-lessons is
doomed to fail!

Challenges Ignoring the component question for the moment, we may ask our-
selves what the major challenges are that are confronting us as software devel-
opers. Briefly put, we still need to go a long way before we understand our
applications well enough in terms of the (problem-solving) patterns underlying
their construction that we can realize these patterns robustly in frameworks that
are not only reusable conceptually, but that will also be (re)used in practice
to develop cost-effective, competitive, economically viable applications. More
concretely, a major challenge for the next decade will be to develop and deploy
frameworks that operate in areas such as finance, medical care, social welfare and

Beyond object-orientation? 31

insurance. This is explicitly not only a technical problem, but also a problem of
coming to agreement with respect to the abstractions and corresponding standards
that provide the computational infrastructure for these domains. Also on my
wish-list is the separation of logic and control, by which I mean the decoupling
of the more or less invariant functionality as may be provided by for example
business objects and business processes and the more variable logic that controls
these processes. In other words, it is necessary that the business logic is made
explicit and that it is factored out of the code effectuating it.

Challenges in O-O 1-30
e vertical framework development — finance, medical care, insurance
e separation of ’logic’ from ’control’ — business rules
e distributed object technology — heterogeneous systems
e visualisation — structure and processes
e knowledge intensive applications — declarative

e heterogeneous systems — fragmented applications

Slide 1-30: Challenges

Another challenge is to integrate the various technologies into our frameworks
and systems. In effect we will see more and more heterogeneous systems, com-
posed of components from a variety of suppliers. These components may be
implemented in every conceivable language, and may run on different platforms.
How to connect these components in a reliable manner is still an open prob-
lem. And more generally, although there are solutions for crossing the various
boundaries, the platform boundary and the language boundary, there are still a
lot of problems to solve. In this book we will explore some of these problems,
and get some experience with some of the solutions. Both our hardware and
software technology are improving rapidly. Yet, we are still stuck with the WIMP
interfaces. In my opinion, it is time for a change. What I would like to see is
an exploration of 3D user interfaces and 3D visualisations of the structure and
processes underlying information-intensive applications. Although not specifically
related to object-oriented software development, this is an area where object
orientation can prove its worth. When we think about real applications, for
example information or business services on the Internet, they are usually the
kind of applications that we may characterize as knowledge-intensive applications.
In a somewhat idealistic vision, we may think of application development that
consists of composing components from perhaps even a number of frameworks,
so that we don’t have to bother with the tiresome details of network access and
GUI development. Then what remains to be done is to glue it all together, and
provide the information and knowledge that enables our application to deliver its
services. Partly we can rely on database technology for the storage and retrieval
of information. But in addition we will need other declarative formalisms for

32 Introduction

expressing, for example, our business logic or, as another example, for expressing
the synchronisation constraints of our multimedia presentation.

Considering Web applications, even as they are today, we see applications
that consist of a mixture of code, tools and information. The phrase fragmented
applications seems apt here. For example a store selling books on the Internet
needs everything ranging from Javascript enabled webpages, to a secure CORBA-
based accounting server. It is very likely that such applications will be developed
partly by composing already existing components. In his book, [Szyperski97]
argues that component-technology must be considered as the next stage, that is
(as the subtitle of his book indicates) beyond object orientation. This is true to
the extent that naive object orientation, characterized by weak encapsulation and
white-box or implementation inheritance, has proven to be not entirely successful.
What we need is a more robust specification of the behavioral properties of objects,
for example by contractual specifications, and a stronger notion of encapsulation,
in which not only the inner world of the object is protected from invasions from
the outside, but where the outer world is also shielded from the object itself, so
that the object cannot reach out into a world that might not even exist. More
concretely, objects must be designed that allows them to be used in a distributed
environment. They must observe, as Wegner puts it, the distribution boundary.

Summary

This chapter has given an outline of the major theme of this book, which may
be characterized as the unification of a software engineering perspective and a
foundational approach. The minor theme may be characterized by saying that a
considerable amount of technology is involved.

Themes and variations 1-31

e terminology — all phrases
e object computation — message passing

e contracts — for constructing and validating software

Slide 1-31: Section 1.1: Themes and variations

In section 1 we looked at the terminology associated with object orientation,
we studied the mechanisms underlying object computation and we discussed an
approach to the development of software that centers around the identification of
responsibilities and the definition of abstract data types embodying the mutual
responsibilities of a client and a server object in terms of a contract. See slide ?7.

Then, in section 2, we looked at object-orientation as a paradigm of program-
ming, extending an abstract data type approach with support for the organization
of object types in a polymorphic type structure. See slide ??7. Further, an overview

Summary 33

Paradigms of programming 1-52
e styles of programming — as a family of conventions
e data abstraction — and its possible realizations

e polymorphism — and the features of inheritance

Slide 1-32: Section 1.2: Paradigms of programming

was given of the literature available on OOP, including a number of landmark
papers on which this book was originally based.

The object-oriented software life-cycle 1-33
e software development models — in particular the role of prototyping
e software quality — in relation to reuse and maintenance

e programming languages — the choice of a vehicle

Slide 1-33: Section 1.3: The object-oriented software life-cycle

In section 3 we looked at the object-oriented software life-cycle, consisting
of the phases of analysis, design and implementation. We discussed software
development models and the role of prototyping, how an object-oriented approach
may promote software quality and facilitate maintenance, and we looked at some
programming languages as vehicles for the implementation of object-oriented
code. See slide ?7.

Beyond object orientation? 1-34
e modeling — patterns, UML
e components — CORBA, (D)COM, Java

e heterogeneous systems — separating logic and control

Slide 1-34: Section 1.4: Trends and technologies

In section 4 we attempted to discern trends in the research and deployment
of object-oriented technologies. We also tried to formulate the challenges we are
faced with which concern the utilization of components for the development of
knowledge-intensive heterogeneous systems, that allow to factor out the (business)
logic in a declarative manner. See slide ?7.

34

Introduction

Questions

1.

N o e

10.

How would you characterize OOP and what, in your opinion, is the moti-
vation underlying the introduction of OOP?

Characterize the most important features of OOP.

Explain the meaning of the phrase ‘object orientation reduces the complexity
of programming.’

How would you characterize contracts? Why are contracts important?
How is OOP related to programming languages?
What classes of languages support OOP features? Explain.

What influence is an object-oriented approach said to have on the software
life-cycle? What is your own opinion? Discuss the problem of maintenance.

How would you characterize software quality?

Mention a number of object-oriented programming languages, and give a
brief characterization.

What do you see as the major challenges for research in object orientation?

Further reading

Nowadays there are many books that may serve as a starting point for reading
about OO. Dependent on your interest, you may look at [Surviving], which
treats issues of OO project management, [Meyer97], which gives an extensive
introduction to design by contract and programming in Eiffel, or [Fowler97],
which gives a succinct introduction to UML. Alternatively, you may take one
of the introductory programming books for Java, from which you will almost
certainly learn something about OO as well.

	Introduction
	Themes and variations
	Object terminology
	Object computation

