Application development

iy
]

lﬁ
I

5k
L

BE.|

L
N

After studying general issues in the design and software engineering of object-
oriented applications and frameworks, it is time to focus in somewhat more detail
on actual application development. In this chapter we will look at the drawtool
application, as a representative of a broader category of interactive editing tools.

Application development 1-1

e the drawtool applications
e guidelines for design
e from specification to implementation

Additional keywords and phrases: hush framework, interactive editors,
law of Demeter, formal specification in Z, abstract systems

Slide 1-1: Application development

The drawtool application is a Java application using the multiparadigm hush
framework. However, in discussing its development, we will concentrate on spec-
ifying the requirements and issues of design. After that we will treat some
miscellaneous issues in the design of classes. This chapter will be concluded with
a case study, a concise, yet detailed, example of a more formal approach to the
development of an object-oriented application.

2 Application development

1.1 The drawtool application

Interactive editors are an interesting category of applications. Interactive editors,
which include word processors and drawing tools, are the kind of applications the
average (end) user is most familiar with. From a software engineering perspective,
interactive editors are interesting because they combine interactive and func-
tional features. See also [GOF94], which provides many patterns for interactive
editors. In the Software Engineering curriculum at the Vrije Universiteit, we
have repeatedly used interactive editors as a medium-term assignment for CS2
students (five weeks for groups of four or five students). One example of such an
assignment is the Interactive Design Assistant discussed in section ?7. Another
example is the musical score editor (see appendix ??7), which has been chosen
by a selected group of CS3 and CS4 students as a practical assignment for the
Object-Oriented Software Development course. In this section we will look at
the drawtool application, which is a representative realization of a (rather simple)
drawing editor. The implementation of drawtool presented here is realized in the
Java version of the hush framework. The hush C++ framework has been used for
a number of years in the Software Engineering curriculum, but has recently been
replaced by Java with Swing. The drawtool application is nevertheless interesting
because it acted for many years as the basic example of an interactive editor for
quite a number of students. Before studying drawtool, we will first look at the
realization of a drawing canvas in hush

A simple drawing canvas in hush

The Tcl/Tk toolkit provides a very powerful scripting environment for realizing
graphical user interfaces, [Ousterhout91]. The hush Java/C++ library gives con-
venient access to the Tcl/Tk toolkit in an object-oriented style. See also [HUSH].

handler widget
| /\
- | [[
‘ kit ‘ session event ‘ widget ‘ button canvas scrollbar

1-2

Slide 1-2: The hush class hierarchy

The hush library provides three kinds of classes, namely (a) the widget classes,
which mimic the functionality of Tk, (b) the handler and event classes, which are
involved in the handling of events and the binding of Java/C++ code to Tcl
commands, and (c) the classes kit and session, which encapsulate the embedded
interpreter and the window management system, In the widget class hierarchy
depicted on the right in slide 77, the widget class represents an abstract widget,
defining the commands that are valid for each of the descendant concrete widget

The drawtool application 3

classes. The widget class, however, is not an abstract class in Java or C++ terms.
It may be used for creating references to widgets defined in Tcl. In contrast,
employing the constructor of one of the concrete widget classes results in actually
creating a widget.

draws 1]

1-8

Slide 1-3: Drawing canvas

Widgets are the elements from which a GUI is made. They appear as windows
on the screen to display text or graphics and may respond to events such as
motioning the mouse or pressing a key by calling an action associated with that
event. The interface of the widget class may be defined by the (pseudo) interface
below.

public interface widget {
public String path();

public void eval(String cmd);

public void pack(String s);

public void bind(handler h,String s);
public void bind(String p, handler h,String s);

public void configure(String cmd);
public void geometry(int x, int y);

public void xscroll(widget w);

4 Application development

public void yscroll(widget w);

public widget self(); // to define compound widgets
public void redirect(widget inner);

};

The function path delivers the path name of a widget object. Each widget
created by Tk actually defines a Tcl command associated with the path name of
the widget. In other words, an actual widget may be regarded as an object which
can be asked to evaluate commands. For example a widget ‘.b’ may be asked to
change its background color by a Tcl command like

.b configure -background blue

The function eval enables the programmer to apply Tcl commands to the widget
directly, as does the configure command. The function geometry sets the width
and height of the widget. As an example look at the code for the drawing canvas
widget depicted in slide 77.

import hush.dv.api.event;
import hush.dv.widgets.canvas;

class draw extends canvas {

boolean dragging;

public draw(String path) {
super(path);
dragging = false;
bind(this);
}

public void press(event ev) {
dragging = true;

public void release(event ev) {
dragging = false;

public void motion(event ev) {
if (dragging)
circle(ev.x(),ev.y(),2,”-fill black”);
}

};

The class draw has an instance variable dragging, that reflects whether the

The drawtool application 5

user is actually drawing a figure. If dragging is true, motions with the mouse will
result in small dots on the screen.

canvas .“.'"jjj::: handler
disparch(event)
I press(event)
draw motion(event)
release(event)
1-4

Slide 1-4: Drawing canvas

A structural view of the draw class is given in slide ??. The draw class is
derived from a canvas, which is itself (indirectly) derived from a handler class.
The handler class dispatches events to predefined handler methods, such as press,
motion and release. For the draw class we must distinguish between a handler
and a canvas part. The handler part is defined by the methods press, release and
motion. The canvas part allows for drawing figures, such as a small circle.

Draw figure - draw/canvas draw/handler event

>C

start /N press
fo start drawing . FRESS
draw drag
draw dots .. MOTION
finish release | i
finish figure RELEASE

1-5

Slide 1-5: Drawing canvas

In slide 7?7 it is depicted how these two parts interact when the user draws
a figure. Actions of the user result in events that activate the handler. Note
that the UML sequence diagrams are not completely adequate here, since it is
difficult to express information concerning the events and the state of the draw
instance. Widgets may respond to events. To associate an event with an action,
an explicit binding must be specified for that particular widget. Some widgets
provide default bindings. These may, however, be overruled. The function bind
is used to associate handlers with events. The first string parameter of bind
may be used to specify the event type. Common event types are, for example,
ButtonPress, ButtonRelease and Motion, which are the default events for canvas
widgets. Also keystrokes may be defined as events, for example Return, which is
the default event for the entry widget.

6 Application development

The function bind(handler, String) may be used to associate a handler object
with the default bindings for the widget. Concrete widgets may not override the
bind function itself, but must define the protected function install. Typically,
the install function consists of calls to bind for each of the event types that is
relevant to the widget. In addition, the widget class offers two functions that
may be used when defining compound or mega widgets. The function redirect(w)
must by used to delegate the invocation of the eval, configure and bind functions
to the widget w. The function self() gives access to the widget to which the
commands are redirected. The function path will still deliver the path name
of the outer widget. Calling redirect when creating the compound widget class
suffices for most situations. However, when the default events must be changed
or the declaration of a handler must take effect for several component widgets,
the function install must be redefined to handle the delegation explicitly.

The drawtool application

[drawrtool
File |Edit

move move

i figure | hox
circle
St-o

circle

Ao

1-6

Slide 1-6: The drawtool interface

In this section we will look at the realization of simple drawing tool. The
example illustrates how to use the hush library widgets, and serves to illustrate
in particular

how to construct compound widgets. A structural view of the drawtool appli-
cation is given in slide 77.

Usually, the various widgets constituting the user interface are (hierarchically)
related to each other, such as in the drawtool application which contains a canvas
to display graphic elements, a button toolbox for selecting the graphic items and
a menubar offering various options such as saving the drawing in a file.

The drawtool application 7

tablet J— E button
J menu |
drawtool |~ toolbox
<A e 1 S

1-7

Slide 1-7: A (partial) class diagram

Widgets in Tk are identified by a path name. The path name of a widget
reflects its possible subordination to another widget. See slide 77.

cdraw.toolbox J draw. frame.menu

| :____- .draw.frame.menu. help
| o - Cf
i

| _— .draw.frame.tablet.canvas

=i .draw.frame. :abie:,scroii_’f

j=—— .draw.frame.tablet

[]
[]
[]
[]

.draw.frame.tablet.scrollx

e
" .draw. frame

1-8

Slide 1-8: Widget containment

Pathnames consist of strings separated by dots. The first character of a path
must be a dot. The first letter of a path must be lower case. The format of a
path name may be expressed in BNF form as

path =:=". | 'string | path’.string

For example ‘.’ is the path name of the root widget, whereas ¢.quit’ is the

path name of a widget subordinate to the root widget. A widget subordinate
to another widget must have the path name of that widget as part of its own
path name. For example, the widget ¢.f.m’ may have a widget ¢.f.m.h’
as a subordinate widget. Note that the widget hierarchy induced by the path
names is completely orthogonal to the widget class inheritance hierarchy. With
respect to the path name hierarchy, when speaking of ancestors we simply mean
superordinate widgets.

Our drawing tool consists of a tablet, which is a canvas with scrollbars to allow
for a large size canvas of which only a part is displayed, a menubar, having a File
and an Edit menu, and a toolbor, which is a collection of buttons for selecting
from among the drawing facilities. In addition, a help facility is offered.

8 Application development

Draw circle ~ tablet menu circle_handler :event
i select i
select handler T B E— activate ;
AN '
choose midpoint SN press |
i fo draw center . . FRESS
choose radius drag)
draw circle® _ MOTION
finish release i -
finish circle RELEASE

1-9

Slide 1-9: An interaction diagram

A typical interaction (or use case) with drawtool is depicted in slide ??. On
selecting the circle menu entry (or toolbox button), the circle handler is activated
to assist in the drawing of a circle. Details will be given when discussing the tablet
widget.

The toolbox component As the first component of drawtool, we will look at the
toolbox. The toolbozx is a collection of buttons packed in a frame.

import hush.dv.api.*;
import hush.dv.widgets.frame;

public class toolbox extends frame {

tablet tablet;

public toolbox(widget w, tablet t) {
super(w,” toolbox”);
tablet = t;
new toolbutton(this,”draw”);
new toolbutton(this,” move”);
new toolbutton(this,”box”);
new toolbutton(this,”circle”);
new toolbutton(this,” arrow”);

public int operator() {
tablet.mode(_event.arg(1)); // reset tablet mode
return OK;

}
b

Each button is an instance of the class toolbutton.

import hush.dv.api.*;

The drawtool application 9

import hush.dv.widgets.button;

public class toolbutton extends button {

public toolbutton(widget w, String name) {
super(w,name);
text(name);
bind(w,name);
pack(”-side top -fill both -expand 17);
}

b

When a toolbutton is created, the actual button is given the name of the
button as its path. Next, the button is given the name as its text, the ancestor
widget w is declared to be the handler for the button and the button is packed.
The function text is a member function of the class button, whereas both handler
and pack are common widget functions. Note that the parameter name is used
as a path name, as the text to display, and as an argument for the handler, that
will be passed as a parameter when invoking the handler object.

The toolbox class inherits from the frame widget class, and creates a frame
widget with a path relative to the widget parameter provided by the constructor.
The constructor further creates the five toolbuttons.

The toolbozx is both the superordinate widget and handler for each toolbutton.
When the operator() function of the toolbox is invoked in response to pressing a
button, the call is delegated to the mode function of the tablet. The argument
given to mode corresponds to the name of the button pressed.

The definition of the toolbutton and toolbozx illustrates that a widget need not
necessarily be its own handler. The decision, whether to define a subclass which
is made its own handler or to install an external handler depends upon what is
considered the most convenient way in which to access the resources needed. As
a guideline, exploit the regularity of the application.

The menubar component The second component of our drawing tool is the
menubar.

import hush.dv.api.widget;

public class menubar extends hush.dv.widgets.menubar {

public menubar(widget w, tablet t, toolbox b) {
super(w,”bar”);
configure(”-relief sunken”);

new FileMenu(this,t);
new EditMenu(this,b);
new HelpButton(this)

}

)

10 Application development

The class menubar, given above, is derived from the hush widget menubar.
Its constructor requires an ancestor widget, a tablet and a toolboxr. The tablet
is passed as a parameter to the file_menu, and the toolbox to the edit_menu.
In addition, a help_button is created, which provides online help in a hypertext
format when pressed. A menubar consists of menubuttons to which actual menus
are attached. Each menu consists of a number of entries, which may possibly lead
to cascaded menus.

The second button of the menubar is defined by the EditMenu. The EditMenu
requires a toolbox and creates a menubutton. It configures the button and defines
a menu containing two entries, one of which is a cascaded menu. Both the main
menu and the cascaded menu are given the toolbox as a handler. This makes sense
only because for our simple application the functionality offered by the toolbox
and EditMenu coincide.

tablet I |K \
ol | draw circle move
handler | handler | handler

Slide 1-10: Tablet

handler | contains | event

The tablet component The most important component of our drawtool appli-
cation is defined by the tablet widget class given below.

import hush.dv.api.*;
import hush.dv.widgets.*;

public class tablet extends canvas {

int _mode;
canvas canvas;

handler[] handlers;

final int DRAW = 0;
final int MOVE = 1;
final int CIRCLE = 2;
final int BOX = 3;
final int ARROW = 5;

public tablet(widget w, String name, String options) {

super(w,name,”*”);

The drawtool application

handlers = new handler[12];

init(options);
redirect(canvas); // to delegate to canvas
bind(this); // to intercept user actions

handlersf] DRAW] = new DrawHandler(canvas);
handlerss]MOVE] = new MoveHandler(canvas);
handlers[BOX]| = new BoxHandler(canvas);
handlers| CIRCLE] = new CircleHandler(canvas);
handlersfARROW] = new ArrowHandler(canvas);

_mode = 0; // drawmode.draw;

}

public int operator() {
handlers[_mode].dispatch(_event);
return OK;

}

public int mode(String s) {
int m = -1;
if ("draw”.equals(s)) m = DRAW;
if ("move”.equals(s)) m = MOVE;
if ("box”.equals(s)) m = BOX;
if ("circle”.equals(s)) m = CIRCLE;
if (?arrow”.equals(s)) m = ARROW;
if (m ;= 0) _mode = m;
return _mode;

}

void init(String options) {
widget root = new frame(path(),”-class tablet”);
canvas = new canvas(root,” canvas” ,options);
canvas.configure(”-relief sunken -background white”);
canvas.geometry(200,100);
scrollbar scrollx = new Scrollbar(root,”scrollx”);
scrollx.orient(”horizontal”);
scrollx.pack(”-side bottom -fill x -expand 07);

scrollbar scrolly = new Scrollbar(root,”scrolly”);

scrolly.orient(” vertical”);
scrolly.pack(”-side right -fill y -expand 07);

11

12 Application development

canvas.pack(”-side top -fill both -expand 17);

canvas.xscroll(scrollx); scrollx.xview(canvas);
canvas.yscroll(scrolly); scrolly.yview(canvas);

}

The various modes supported by the drawing tool are enumerated as final
constants. The tablet class itself inherits from the canvas widget class. This
has the advantage that it offers the full functionality of a canvas. In addition
to the constructor and operator() function, which delegates the incoming event
to the appropriate handler according to the _mode variable, it offers a function
mode, which sets the mode of the canvas as indicated by its string argument,
and a function init that determines the creation and geometrical layout of the
component widgets. As instance variables, it contains an integer _mode variable
and an array of handlers that contains the handlers corresponding to the modes
supported.

Although the tablet must act as a canvas, the actual tablet widget is nothing
but a frame that contains a canvas widget as one of its components. This is
reflected in the invocation of the canvas constructor (super). By convention,
when the options parameter is * instead of the empty string, no actual widget
is created but only an abstract widget, as happens when calling the widget class
constructor. Instead of creating a canvas right away, the tablet constructor creates
a top frame, initializes the actual component widgets, and redirects the eval,
configure and bind invocations to the subordinate canvas widget. It then binds
itself to be its own handler, which results in binding itself to be the handler for
the canvas component. Note that reversing the order of calling redirect and bind
would be disastrous. After that it creates the handlers for the various modes and
sets the initial mode to move.

The operator() function takes care of dispatching calls to the appropriate
handler. The dispatch function must be called to pass the tk, argc and argv
parameters.

The drawtool class Having taken care of the basic components of the drawing
tool, that is the toolbox, menubar and tablet widgets, all that remains to be done
is to define a suitable file_handler, appropriate handlers for the various drawing
modes and a help_handler.

We will skip these, but look at the definition of the drawtool class instead.
In particular, it will be shown how we may grant the drawtool the status of a
veritable Tk widget, by defining a drawtool handler class and a corresponding
drawtool widget command.

import hush.dv.api.*;
import hush.dv.widgets.frame;

The drawtool application

import hush.dv.widgets.canvas;

public class drawtool extends canvas {

widget root;
tablet tablet;

public drawtool() { System.out.println(”meta handler created”); }

public drawtool(String p, String options) {
super(p,”*”); // create empty tablet
init(options);

public int operator() {
System.out.println(” Calling drawtool:” + _event.args(0));
String[] argv = _event.argv();
if (7self” .equals(argv[1])) tk.result(self().path());
else if (”drawtool”.equals(argv(0]))
create(argv([l],_event.args(2));
else if ("path”.equals(argv([1])) tk.result(path());
else if ("pack”.equals(argv[l])) pack(_event.args(2));
else self().eval(_event.args(1)); // send through
return OK;

}

void create(String name, String options) {
drawtool m = new drawtool(name,options);

}

void init(String options) {
root = new frame(path(),”-class Meta”);
frame frame = new frame(root,” frame”);
tablet = new tablet(frame,” tablet” ,options);

toolbox toolbox = new toolbox(frame,tablet);
menubar menubar = new menubar(root,tablet,toolbox);

toolbox.pack(”-side left -fill y -expand 0”);
tablet.pack(”-side left -fill both -expand 1”);

menubar.pack();
frame.pack(”-expand 1 -fill both”);

redirect(tablet); // the widget of interest

13

14 Application development

};

Defining a widget command involves three steps: (I) the declaration of the
binding between a command and a handler, (IT) the definition of the operator()
function, which actually defines a mini-interpreter, and (IIT) the definition of the
actual creation of the widget and its declaration as a Tcl/Tk command.

Step (I) is straightforward. We need to define an empty handler, which will
be associated with the drawtool command when starting the application.

The functionality offered by the interpreter defined by the operator() function
in (II) is kept quite simple, but may easily be extended. When the first argument
of the call is drawtool, a new drawtool widget is created as specified in (III), except
when the second argument is self. In that case, the virtual path of the widget is
returned, which is actually the path of the tablet’s canvas. It is the responsibility
of the writer of the script that the self command is not addressed to the empty
handler. If neither of these cases apply, the function eval is invoked for self(),
with the remaining arguments flattened to a string. This allows for using the
drawtool almost as an ordinary canvas.

Canvas ¢ = new DrawTool(”draw”,””);

tk.bind(” drawtool” ,c);
c.circle(20,20,20,”-fill red”);
c.rectangle(30,30,70,70,”-fill blue”);
c.pack();

In the program fragment above, the Tcl command drawtool is declared, with
an instance of drawtool as its handler. (It is assumed that the tk variable refers
to an instance of kit.) In this way, the drawtool widget is made available as a
command when the program is used as an interpreter. In this case, the actual
drawtool widget is made the handler of the command, to allow for a script to
address the drawtool by calling drawtool self.

1.2 Guidelines for design

Computing is a relatively young discipline. Despite its short history, a number of
styles and schools promoting a particular style have emerged. However, in contrast
to other disciplines such as the fine arts (including architecture) and musical
composition, there is no well-established tradition of what is to be considered as
good taste with respect to software design. There is an on-going and somewhat
pointless debate as to whether software design must be looked at as an art or
must be promoted into a science. See, for example, [Knuth92] and [Gries]. The
debate has certainly resulted in new technology but has not, I am afraid, resulted
in universally valid design guidelines.

The notion of good design in the other disciplines is usually implicitly defined
by a collection of examples of good design, as preserved in museums or (art or

Guidelines for design 15

music) historical works. For software design, we are still a long way from anything
like a museum, setting the standards of good design. Nevertheless, a compendium
of examples of object-oriented applications such as [Pinson90] and [Harmon93],
if perhaps not setting the standards for good design, may certainly be instructive.

Development process — cognitive factors

e model — realize — refine

Design criteria — natural, flexible, reusable
e abstraction — types
e modularity — strong cohesion (class)
e structure — subtyping
e information hiding — narrow interfaces

e complexity — weak coupling

Slide 1-11: Criteria for design

The software engineering literature abounds with advice and tools to measure
the quality of good design. In slide 7?7, a number of the criteria commonly
found in software engineering texts is listed. In software design, we evidently
strive for a high level of abstraction (as enabled by a notion of types and a
corresponding notion of contracts), a modular structure with strongly cohesive
units (as supported by the class construct), with units interrelated in a precisely
defined way (for instance by a client/server or subtype relation). Other desirable
properties are a high degree of information hiding (that is narrowly defined and
yet complete interfaces) and a low level of complexity (which may be achieved
with units that have only weak coupling, as supported by the client /server model).
An impressive list, indeed.

Design is a human process, in which cognitive factors play a critical role.
The role of cognitive factors is reflected in the so-called fractal design process
model introduced in [JF88], which describes object-oriented development as
a triangle with bases labeled by the phrases model, realize and refine. This
triangle may be iterated at each of the bases, and so on. The iterative view
of software development does justice to the importance of human understanding,
since it allows for a simultaneous understanding of the problem domain and the
mechanisms needed to model the domain and the system architecture.

Good design involves taste. My personal definition of good design would
certainly also involve cognitive factors (is the design understandable?), including
subjective criteria such as is it pleasant to read or study the design?

1.2.1 Individual class design

A class should represent a faithful model of a single concept, and be a reusable,
plug-compatible component that is robust, well-designed and extensible. In slide

16 Application development

?7?, we list a number of suggestions put forward by [McGregor92].

Class design — guidelines
e only methods public — information hiding
e do not expose implementation details
e public members available to all classes — strong cohesion
e as few dependencies as possible — weak coupling
e explicit information passing

e root class should be abstract model — abstraction

Slide 1-12: Individual class design

The first two guidelines enforce the principle of information hiding, advising
that only methods should be public and all implementation details should be
hidden. The third guideline states a principle of strong cohesion by requiring
that classes implement a single protocol that is valid for all potential clients. A
principle of weak coupling is enforced by requiring a class to have as few depen-
dencies as possible, and to employ explicit information passing using messages
instead of inheritance (except when inheritance may be used in a type consistent
fashion). When using inheritance, the root class should be an abstract model
of its derived classes, whether inheritance is used to realize a partial type or to
define a specialization in a conceptual hierarchy.

The properties of classes, including their interfaces and relations with other
classes, must be laid down in the design document. Ideally, the design document
should present a complete and formal description of the structural, functional and
dynamic aspects of the system, including an argument showing that the various
models are consistent. However, in practice this will seldom be realized, partly be-
cause object-oriented design techniques are as yet not sufficiently matured to allow
a completely formal treatment, and partly because most designers will be satisfied
with a non-formal rendering of the architecture of their system. Admittedly,
the task of designing is already sufficiently complex, even without the additional
complexity of a completely formal treatment. Nevertheless, studying the formal
underpinnings of object-oriented modeling based on types and polymorphism is
still worthwhile, since it will sharpen the intuition with respect to the notion of
behavioral conformance and the refinement of contracts, which are both essential
for developing reliable object models. And reliability is the key to reuse!

1.2.2 Inheritance and invariance

When developing complex systems or class libraries, reliability is of critical im-
portance. As shown in section 77, assertions provide a means by which to check
the runtime consistency of objects. In particular, assertions may be used to check
that the requirements for behavioral conformance of derived classes are met.

