
1

Software engineering perspectives

In the previous chapter we looked at idioms and patterns that resulted from
object-oriented software development. In this chapter we will focus on the software
engineering of object-oriented systems and issues of design in particular, including
the identification of objects and the specification of contractual obligations.

Software engineering perspectives 3

• methods of development

• the identification of objects

• contracts – refinement

• validation – a formal approach

Additional keywords and phrases: requirements, analysis, implemen-
tation, design as transition, CRC cards, responsibilities, heuristics,
contractual obligations, validation

1-1

Slide 1-1: Software engineering perspectives

First we will explore what methods are available to guide us in the development
of object-oriented systems. Then we will look more closely at the heuristics
of actual design. After establishing what is involved in specifying contractual
obligations, we will discuss what is needed for a more formal approach to object-
oriented development.

1



2 Software engineering perspectives

1.1 Development methods

Object-oriented software development is a relatively new technology. Conse-
quently, ideas with respect to methodologies supporting an object-oriented ap-
proach are still in flux. Nevertheless, a plethora of methods and tools does exist
supporting object-oriented analysis and design. See slide ??.

Methods

• OOA/D – incremental [CY91b]

• Objectory – use-case analysis [Jacobs92]

• OOSA – model-driven [Kurtz90]

• OOSD – structured [Wasserman89]

• CRC – cards [BC89]

• RDD – responsibility-driven [Wirfs89]

• OMT – object modeling [Rum91]

• OOD – development [Booch91]

• Fusion – lifecycle [Fusion]

Unified Modeling Language – standard notation UML

• class diagrams, object interaction, packages, state and activity

1-2

Slide 1-2: Software development methods

Some of these methods (and corresponding tools) directly stem from a more
conventional (read structured) approach to software development. Others are
more radical and propose new tools to support the decomposition principles un-
derlying object-oriented technology. Naturally, those who wish to make a gradual
shift from conventional technology to adopting an object-oriented approach may
benefit from methods that adapt familiar techniques to the new concepts. In
this section we will look at a variety of existing methods and the tools they
offer. We do not discuss the tools and diagram techniques used in any detail.
However, we will discuss the Fusion method in somewhat more detail. Fusion
is a strongly systematic approach to object-oriented software development that
integrates various concepts and modeling techniques from the other methods,
notably OMT, Booch OOD, Objectory and CRC. We will discuss the process
view underlying Fusion and sketch the models it supports in relation to the other
methods. For the reader this section may supply an overview and references
needed for a more detailed study of a particular method or tool. A recent
development is the Unified Modeling Language (UML), which has been approved
as a standard in 1998. UML brings together the models and notations featured
by the various methods.

Jim Rumbaugh, Grady Booch and Ivar Jacobson, all leading experts in object-



Development methods 3

oriented development, joined forces to achieve this. The importance of such a
standardization can hardly be overemphasized. However, it must be noted that
UML does not provide a method, in the sense of delineating the steps that must be
taken in the development of a system. UML itself may be regarded as a toolbox,
providing notations and modeling techniques that may be deployed when needed.
A brief overview of UML is given in ??. An excellent introduction to UML,
including advice how to apply it in actual projects may be found in [Fowler97].

Structured methods Initially, structured methods (which were developed at
the beginning of the 1970s) were primarily concerned with modeling processes
in a modular way. Based on software engineering principles such as module
coupling and cohesion, tools were developed to represent the structure of a design
(within what we have previously called the procedural or modular paradigm);
see, for example, [Yourdon79]. Apart from diagrams to describe the modular
architecture of a system (such as structure charts and process specifications),
structured methods also employ data flow diagrams to depict processes and the
flow of data between them, and hierarchy diagrams to model the structure of the
data involved. See slide ??.

Structured methods tools

• structure chart

• process specification

• dataflow diagrams

• hierarchy diagram

• entity-relationship diagrams

• data dictionary

• state transition diagram

1-3

Slide 1-3: Tools for a structured approach

Later, structured methods were extended to encompass analysis, and the focus
shifted to modeling the data by means of entity-relationship diagrams and data
dictionaries. Also, state transition diagrams were employed to represent the
behavioral aspects of a system.

As observed in [Fichman], in the late 1970s and early 1980s, planning and
modeling of data began to take on a more central role in system development, cul-
minating in data oriented methodologies, such as information engineering (which
may be regarded as precursors to object-oriented methods). Information engi-
neering, however, is primarily concerned with analysis and strategic planning. In
addition to the modeling techniques mentioned, tools were developed to model the
information needs of an enterprise and to perform risk analysis. Also, extensions
to the data dictionary were proposed in order to have an integrated repository,
serving all phases of the development. Currently, repository-based techniques are



4 Software engineering perspectives

again of interest since, in combination with modern hypermedia technology, they
may serve as the organizational basis for reuse.

1.1.1 Perspectives of modeling

Understanding a problem domain may be quite demanding. Understanding is even
more difficult when the description of the domain is cast in some representation
pertaining to the solution domain. An object-oriented approach is said to require
less translation from the problem domain to the (software) solution domain, thus
making understanding easier. Many proponents of an object-oriented approach,
however, seem to be overly optimistic in their conception of the modeling task.
From an epistemological point of view, modeling may be regarded as being essen-
tially colored by the mechanisms that are available to express the model. Hence,
rather than opposing the functional and object-oriented approach by claiming
that an object-oriented approach aims at modeling reality, I would prefer to
characterize the distinction in terms of (modeling from) a different vernacular,
a different perspective due to different modeling mechanisms. In other words, a
model is meant to capture some salient aspects of a system or problem domain.
Dependent on what features are considered as most important, different means
will be chosen to construct a model.

Even within the confines of an object-oriented approach, there appear to be
radically different perspectives of the modeling required in the various phases of
the software life-cycle.

Modeling reality – vernacular

• requirements – use cases

• analysis – domain concepts

• design – system architecture

• implementation – language support

Design model – system oriented

• provides a justification of the architecture

1-4

Slide 1-4: Perspectives of modeling

An important contribution of [Jacobs92] is the notion of use cases that
describe the situations in which a user actually interacts with the system. Such
a (use case) model is an important constituent of the requirements document,
since it precisely describes what the system is intended for. For the purpose of
analysis, it may be helpful to develop a more encompassing (conceptual) model of
the problem domain. The advantage of such an approach is that the actual system
may later easily be extended due to the generality of the underlying analysis
model. In contrast to the model used in analysis, both the design model and
the implementation model are more solution oriented than domain oriented. The



Development methods 5

implementation model is clearly dependent on the available language support.
Within a traditional life-cycle, the design model may be seen as a transition
from analysis to implementation. The notion of objects may act as a unifying
factor, relating the concepts described in the analysis document to the com-
ponents around which the design model is built. However, as we have noted,
object-oriented development does not necessarily follow the course of a traditional
software life-cycle. Alternatively, we may characterize the function of the design
document as a justification of the choices made in deciding on the final architecture
of the system. This remark holds insofar as an object-oriented approach is adopted
for both design and implementation. However, see [Hend90] for a variety of
combinations of structured, functional and object-oriented techniques.

Dimensions of modeling When restricting ourselves to design models, we may
again distinguish between different modeling perspectives or, which is perhaps
more adequate in this context, dimensions of modeling. In [Rum91], it is pro-
posed to use three complementary models for describing the architecture and
functionality of a system. See slide ??.

Dimensions of modeling – OMT

• object model – decomposition into objects

• dynamic model – intra-object state changes

• functional model – object interaction (data-flow)

Model of control

• procedure-driven, event-driven, concurrent

1-5

Slide 1-5: The OMT method

The OMT method distinguishes between an object model, for describing the
(static) structure of object classes and their relations, a dynamic model, that
describes for each object class the state changes resulting from performing oper-
ations, and a functional model, that describes the interaction between objects in
terms of a data-flow graph.

An important contribution of [Rum91] is that it identifies a number of com-
monly used control models, including procedure-driven control, event-driven con-
trol and concurrent control. The choice for a particular control model may deeply
affect the design of the system.

The OMT approach may be called a hybrid method since it employs non object-
oriented techniques for describing intra-object dynamics, namely state-charts, and
a functional approach involving data-flow diagrams, for describing inter-object
communication.

Coherent models The OMT object model, however, only captures the static
structure of the system. To model the dynamic and functional aspects, the object



6 Software engineering perspectives

model is augmented with a dynamic model, which is given by state diagrams, and
a functional model, which is handled by data flow diagrams. From a formal point
of view this solution is rather unsatisfactory since, as argued in [Hayes91], it is
hard to establish the consistency of the combined model, consisting of an object,
dynamic and functional model.

Model criteria – formal approach

• unambiguous – single meaning

• abstract – no unnecessary detail

• consistent – absence of conflict

1-6

Slide 1-6: Coherent models – criteria

Consistency checking, or at least the possibility to do so, is important to
increase our belief in the reliability (and reusability) of a model. To be able
to determine whether a model is consistent, the model should be phrased in an
unambiguous way, that is, in a notation with a clear and precise meaning. See slide
??. Also, to make the task of consistency checking manageable, a model should
be as abstract as possible, by leaving out all irrelevant details. To establish the
consistency of the combined model, covering structural, functional and dynamic
aspects, the interaction between the various models must be clearly defined.

1.1.2 Requirements engineering – Fusion

The Fusion method is presented in [Fusion] as a second generation object-oriented
method. The phrase second generation is meant to indicate that the method
transcends and incorporates the ideas and techniques employed in the early object-
oriented methods.

Above all, the Fusion method focuses on a strongly systematic approach
to object-oriented software development, with an emphasis on the process of
development and the validation of the consistency between the models delivered
in the various phases of a project.

The software life-cycle model underlying Fusion is the traditional waterfall
model, consisting of the subsequent phases of analysis, design and implementation.
Each phase results in a number of models describing particular aspects of the
system. See slide ??. A data dictionary is to be kept as a means to unify the
terminology employed in the various phases.

The models produced as the result of analysis, design and implementation
serve to document the decisions made during the development. Each of the
phases covers different aspects of the system. Analysis serves to document the
system requirements from a user perspective. The Fusion method describes how
to construct an Object Model that captures the basic concepts of the application
domain. These concepts are represented as entities or objects and are connected



Development methods 7

Analysis – Fusion Fusion

• Object Model – concepts and relations

• LifeCycle Model – sequences of operations

• Operation Model – semantics of system operations

Design data dictionary

• Object Interaction Graph – functional dependencies

• Visibility Graphs – communication structure

• Class Descriptions – attributes and methods

• Inheritance Graphs – subtype refinement

Implementation validation

• System Lifecycle – state machines

• Class Descriptions – coding, performance

1-7

Slide 1-7: The Fusion method

by relations, similar to entity-relationship diagrams employed in semantic model-
ing. Analysis also results in an Operation Model, describing the semantics of the
operations that may be performed by a user by means of pre- and post-conditions,
in a formal manner. In addition, Fusion defines a Lifecycle Model that describes,
by means of regular expressions, which sequences of operations are allowed.

Design may be considered as the transition between analysis and implementa-
tion. During design, decisions are made with respect to the realization of the
system operations identified during analysis. Design according to the Fusion
method results in an Object Interaction Graph, that for each system operation
describes which objects are involved and which methods are invoked. Fusion
also allows one to label the arrows representing method calls in the interaction
diagram with sequencing information. In addition, design involves the construc-
tion of Visibility Graphs, indicating the attribute and method interface for each
object, Class Descriptions, defining the attributes and methods of objects, and
Inheritance Graphs, specifying the subtype refinement relation between classes.

Implementation is considered in the Fusion method as a phase in which to
work out the details of the decisions taken during analysis and design. It results
in a System Lifecycle description for each object identified in the Object Model,
in the form of a finite state machine, and precise Class Descriptions, in the form
of (preferably) efficient code.

Validation An important aspect of the Fusion method is the validation of the
completeness and consistency of the collection of models. Completeness, obvi-
ously, is a relative matter and can only be established with respect to explicitly



8 Software engineering perspectives

stated user requirements. However, the models developed in a particular phase
impose additional requirements upon the efforts engaged in the later phases and in
the end maintenance. Consistency involves verifying whether the various models
are not contradictory. For both development and validation, the data dictionary
plays an important role, as a common point of reference.

1.1.3 Methods for analysis and design – a comparative study

In [Fichman] a comparative review of a selected number of object-oriented anal-
ysis and design methods is given. Criteria for selection were the availability of
documentation and acceptance in the object-oriented community, measured in
terms of refereed articles.

Paraphrasing [Fichman] again: As with traditional analysis, the primary
goal of object-oriented analysis is the development of an accurate and complete
description of the problem domain.

The three analysis models described in [Fichman] share a number of diagram
techniques with both structured methods and methods for object-oriented design.
However, the method proposed in [Shlaer88] in particular reflects the domain-
oriented focus of analysis.

A similar focus on domain requirements and analysis may be found in the
Objectory method. See slide ??. Objectory is one of the methods that has
inspired Fusion, in particular because it presents a systematic approach to the
process of software development. The Objectory method centers around use
case analysis. Use case analysis involves a precise description of the interaction
between the user of a system and the components representing domain-specific
functionality. The Objectory method gives precise guidelines on how to proceed
from the identification of use cases, which include user interface aspects, to their
realization in the subsequent phases of design and implementation. Objects are
called blocks in Objectory. Use case analysis corresponds in a loose way with the
identification of system operations in Fusion.

There is a close correspondence between the OMT object model and the
analysis object model of Fusion. Both OMT and Fusion employ extended entity-
relationship diagrams. Also, the dynamic model of OMT reoccurs in the Fusion
method, albeit in a later phase. The functional model of OMT, which has
the form of a dataflow diagram, is generally considered to be inappropriate for
object-oriented analysis. Instead, Fusion employs a model in which the semantics
of system operations are captured by means of formal pre- and post-conditions.
In [Fusion], OMT is characterized as a very loose method, giving few rules for
discovering inconsistencies between the various models and lacking a clear view
with respect to the process of development. OMT is strongly focused on analysis,
giving nothing but heuristics to implement the models that result from analysis.
However, what is called the light-weight Fusion method almost coincides with
OMT.

A lack of detailed guidelines for the process of software development is also
characteristic of the Booch OOD method. Booch offers a wealth of descriptive



Development methods 9

Objectory – systematic process

• requirements – use cases, domain object model, user interface

• analysis – subsystems

• design, implementation – block model, interaction diagrams

OMT – few rules for inconsistencies

• analysis – object model, dynamic model, functional model

• design, implementation – heuristics to implement analysis models

Booch – descriptive

• diagrams – class, object, timing, state, module, process

CRC – exploratory

• analysis, design – class, responsibilities, collaborators

Formal methods

• operations – pre- and post-conditions

1-8

Slide 1-8: Comparison of methods (1)

diagrams, giving detailed information on the various aspects of a system, but
offers merely heuristics for the actual process of development.

The CRC method must be regarded primarily as a means to explore the
interaction between the various objects of a domain. It is powerful in generating
ideas, but offers poor support for documenting the decisions with respect to the
objects and how they interact.

Formal methods have been another important source of inspiration for the
Fusion method. The description of system operations during analysis employs a
characterization of the functionality of operations that is directly related to the
specification of operations in model-based specification methods such as VDM
and Z. See section ??.

The Fusion method may be regarded as being composed of elements of the
methods mentioned above. It shares its object model with OMT, its approach to
the characterization of system operations with formal methods, its focus on object
interaction with CRC and its explicit description of classes and their relations with
Booch. See slide ??.

In comparison with these methods, however, it provides a much more system-
atic approach to the process of development and, moreover, is explicitly concerned
with issues of validation and consistency between models. In addition, [Fusion]
claim to provide explicit semantics for their various models, whereas the other
methods fail to do so. However, it must be remarked that the Fusion method
remains somewhat obscure about the nature of system operations. System opera-
tions are characterized as asynchronous. Yet, if they are to be taken as methods,



10 Software engineering perspectives

Comparison - as a systematic approach

Objectory OMT Booch CRC Fusion
development + +- - x +
maintenance + +- + - +
structure +- +- + + +
management + +- +- - +
tool support +- +- +- - +

1-9

Slide 1-9: Comparison of methods (2)

such operations may return a result, which is quite hard to reconcile with their
asynchronous nature. The claim that the models have a precise semantics, which
is essential for tool support, must be substantiated by providing an explicit
semantics in a formal manner!

With regard to the process of development, both Objectory and Fusion provide
precise guidelines. The CRC method may be valuable as an additional exploratory
device. For maintenance, the extent to which a method enforces the documenta-
tion of design decisions is of utmost importance. Both the Objectory and Booch
method satisfys this criterion, as does the Fusion method. OMT is lacking in this
respect, and CRC is clearly inadequate.

Whether a method leads to a good object-oriented design of the system ar-
chitecture, depends to a large extent upon the ability and experience of the
development team. Apart from Fusion, both the Booch method and CRC may
be characterized as purely object-oriented, whereas Objectory and OMT are
considered to be impure.

A strongly systematic approach to the process of development is important in
particular from the point of view of project management. Project management
support entails a precise definition of the deliverables associated with each phase,
as well as an indication of the timing of their deliverance and validation. Both the
OMT method and Booch are lacking in this respect, since they primarily provide
techniques to develop descriptive models. Clearly, CRC lacks any support for
project management.

Tool support is dependent on the existence of a well-defined semantics for the
models employed. For both Objectory and OMT commercial tools are available,
despite their loosely specified semantics. The Fusion diagramming techniques are
also supported.

For CRC, tool support is considered to be useless. The success of the method
depends upon flexibility, the ease with which new ideas can be tried, a flexibility
which even hypertext cannot offer, according to its authors.



1.2. IDENTIFYING OBJECTS 11

1.2 Identifying objects

Object-oriented design aims at describing a system in terms of objects (as the
primary components) and the interaction between them. Motivated by the wish
to arrive at stable abstractions, object-oriented design is often characterized as
modeling reality, that is the application domain. However, many applications
require, at least partly, a system-oriented view towards design, since they involve
system artifacts for which there exist no clearly identifiable counterparts in the
application domain. As an example, think of a window-based system. Many of
the items (widgets) introduced in such a system belong to an artificial reality,
which at best is only vaguely analogous with reality as we normally understand
it.

Irrespective of whether the design is intended as a preliminary study before
the implementation or as a post hoc justification of the actual system, the most
important and difficult part of design is the identification of objects and the
characterization of their role in the system and interaction with other objects.

As observed in [McGregor92], object-oriented design is best seen as class
oriented, that is directed towards the static description of (classes of) objects,
rather than a description of the dynamic interaction between actual objects.
In section ??, we will discuss class-less languages which are well suited for ex-
ploratory programming. However, from the perspective of design, we are more
interested in a (static) abstract specification of the components that constitute
the system.

Object-oriented design – decomposition into objects

• application/system/class oriented

Identifying objects – responsibilities

• data/procedure oriented

Layers of abstraction

• components, subsystems, frameworks

1-10

Slide 1-10: Object-oriented design

In comparison with a functional approach, object-oriented design is clearly
data oriented. However, although a data-oriented approach may provide a first
guideline in developing the system, the primary concern in object-oriented design
should be the responsibilities of an object rather than how it acts as a data
manager, so to speak.

For larger systems, the complexity of the design may necessitate the intro-
duction of additional layers of abstraction. Apart from objects, which must be
regarded as the basic components of a system, we may need to isolate subsystems,
consisting of a number of related object classes. When we have developed a



12 Software engineering perspectives

subsystem that can be used in a variety of contexts, such a subsystem may
be used as a framework. A framework is generally not only a collection of
classes but must also be seen as an approach or method in its own way, since
it usually imposes additional constraints on the development. For example, most
development environments for window-based applications provide a framework
consisting of a number of predefined classes and functions, and guidelines or
recipes that prescribe how to use or adapt these classes and functions. Also,
most frameworks impose a specific control model, such as the event-driven control
model imposed by window programming environments.

1.2.1 Modeling heuristics

Following [Booch86], we may characterize objects as ‘crisp’ entities that suffer
and require actions. From the perspective of system development, objects must
primarily be regarded as computational entities, embodying the means by which
we may express a computation. Modeling a particular problem domain, then,
means defining abstractions in terms of objects, capturing the functional charac-
teristics of that domain. The question is, how do we arrive at such a model?

Objects – crisp entities

• object = an entity that suffers and requires actions

The method:

• [1] Identify the objects and their attributes

• [2] Identify operations suffered and required

• [3, 4] Establish visibility/interface

1-11

Slide 1-11: The Booch method

In [Booch86], a straightforward method of object oriented development is
proposed, which consists of the successive identification of objects and their
attributes, followed by a precise characterization of the interobject visibility re-
lations. In [Booch91], a shift of emphasis has occurred towards determining
the semantics of an individual object and the interaction between collections of
objects.

As a heuristic to arrive at the proper abstractions of the problem domain
(in terms of object classes), [Booch86] proposes scanning the requirements
document for nouns, verbs and adjectives, and using these as initial suggestions
for respectively objects, and operations and attributes belonging to objects (see
slide ??). This technique has been adopted and augmented by a number of other
authors, among which [WWW90] and [Rum91]. For example, [WWW90]
illustrate the technique in fine detail in several examples, including the design of
an automated teller machine and a document processing system.

In addition to the interpretation of nouns as possible objects, verbs as possible
operations on objects, and adjectives as possible attributes of objects, [Rum91]



Identifying objects 13

Heuristics

• model of reality – balance nouns (objects) and verbs (operations)

Associations

• directed action – drives, instructs

• communication – talks-to, tells, instructs

• ownership – has, part-of

• resemblance – like, is-a

• others – works-for, married-to

1-12

Slide 1-12: Heuristics for modeling

suggest this technique to determine other relations and associations between
object classes as well. For instance, a model of control and object interaction may
be suggested by phrases indicating directed action or communication. Similarly,
structural issues, such as whether an object owns another object or whether inheri-
tance should be used, may be decided on the basis of resemblance or subordination
relations.

Example – ATM (1) The example of an automated teller machine discussed
in [WWW90] nicely illustrates a number of the notions that we have thus far
looked at only in a very abstract way. A teller machine is a device, presumably
familiar to everyone, that allows you to get money from your account at any
time of the day. Obviously, there are a number of constraints that such a machine
must satisfy. For instance, other people should not be allowed to withdraw money
from your account. Another reasonable constraint is that a user cannot overdraw
more than a designated amount of money. Moreover, each transaction must be
correctly reflected by the state of the user’s account.

An initial decomposition into objects based on these requirements is shown in
slide ??. In [WWW90], a fully detailed account is given of how one may arrive
at such a decomposition by carefully reading (and re-reading) the requirements
document. What we are interested in here, however, is how we may establish
that we have not overlooked anything when proposing a design, and how we may
verify that our design correctly reflects the requirements.

This particular example nicely illustrates the need for an analysis of the use
cases. To develop a proper interface, we must precisely know what a user is
expected to do (for instance, insert a bank card, key in a PIN code) and how the
system must respond (what messages must be displayed, how to react to a wrong
PIN code, etc.). Another decision that must be made is when the account will be
changed as the result of a transaction. Also, we must decide what to do when a
user overdraws.

A very important issue that we will look at in more detail in the next sections



14 Software engineering perspectives

Candidate classes ATM

• account – represents the customer’s account in the banks database

• atm – performs financial services for a customer

• cardreader – reads and validates a customer’s bankcard

• cashdispenser – gives cash to the customer

• screen – presents text and visual information

• keypad – the keys a customer can press

• pin – the authorization code

• transaction – performs financial services and updates the database

1-13

Slide 1-13: The ATM example (1)

is how the collection of objects suggested above will interact. What means do we
have to describe the cooperation between the objects, and how do we show that
the proposed system meets all the requirements listed above? Moreover, can we
verify that the system satisfies all the constraints mentioned in the requirements
document?

Validation However, before examining these questions and trying out different
scenarios, we may as well try to eliminate the spurious classes that came up in
our initial attempt. In [Rum91], a number of reasons are summarized that may
be grounds on which to reject a candidate class. See slide ??.

Eliminating spurious classes

• vague – system, security-provision, record-keeping

• attribute – account-data, receipt, cash

• redundant – user

• irrelevant – cost

• implementation – transaction-log, access, communication

Good classes

• our candidate classes

1-14

Slide 1-14: Eliminating spurious classes

For example, the notion underlying the candidate class may be too vague to
be represented by a class, such as the notion of system or record-keeping. Another
reason for rejecting a suggested class may be that the notion represents not so
much a class, but rather a possible attribute of a class. Further, a proposed class
may either be redundant, for example the class user, or simply irrelevant, as is the



Identifying objects 15

class cost. And finally, a class may be too implementation oriented, such as the
class transaction-log or classes that represent the actual communication or access
to the account.

Looking back, our choice of candidate classes seems to have been quite fortu-
nate, but generally this will not be the case, and we may use the checklist above
to prune the list of candidate classes. An interesting architectural issue is, how
may we provide for future extensions of the system? How easily can we reuse
the design and the code for a system supporting different kinds of accounts, or
different input or output devices? And how can we establish that the objects, as
identified, interact as desired?

1.2.2 Assigning responsibilities

Design is to a large extent a matter of creative thinking. Heuristics such as
performing a linguistic scan on the requirements document for finding objects
(nouns), methods (verbs) and attributes (adjectives) may be helpful, but will
hopelessly fail when not applied with good taste and judgement. Not surprisingly,
one of the classical techniques of creative writing, namely the shoe-box method, has
reappeared in the guise of an object-oriented development method. The shoe-box
method consists of writing fragments and ideas on note cards and storing them in a
(shoe) box, so that they may later be retrieved and manipulated to find a suitable
ordering for the presentation of the material. To find a proper decomposition into
objects, the method creates for each potential (object) class a so-called CRC card,
which lists the Class name, the Responsibilities and the possible Collaborators of
the proposed class. In a number of iterations, a collection of cards will result that
more or less reflects the structure of the intended system.

According to the authors (see Beck and Cunningham, 1989), the method
effectively supports the early stages of design, especially when working in small
groups. An intrinsic part of the method consists of what the authors call dynamic
simulation. To test whether a given collection of cards adequately characterizes
the functionality of the intended system, the cards may be used to simulate the
behavior of the system. When working in a group, the cards may be distributed
among the members of the group, who participate in the simulation game accord-
ing to their cards. See slide ??.

A number of authors have adopted this method, or developed a very simi-
lar method, for identifying objects and characterizing their functionality in an
abstract way. It is doubtful, however, whether the method has any significance
beyond the early stages of analysis and design. Without any more formal means
to verify whether the responsibilities listed adequately characterize the intended
functionality of the system, the method amounts to not much more than brain-
storming. Clearly, the method needs to be complemented by more formal means
to establish whether the (implicit) protocols of interaction between the objects
satisfy the behavioral requirements of the system.

Nevertheless, the elegant simplicity of the method is appealing, and the card
format lends itself to easy incorporation in an on-line documentation system.
Moreover, since the method imposes no strict order, and has relatively little


