0.1 Specifying behavioral compositions

The notion of behavioral types may be regarded as the formal underpinning of the
notion of contracts specifying the interaction between a client and server (object);
cf. [Meyer93]. Due to the limited power of the (boolean) assertion language,
contracts as supported by Eiffel are more limited in what may be specified than
(a general notion of) behavioral types. However, some of the limitations are due,
not to limitations on the assertion language, but to the local nature of specifying
object behavior by means of contracts. See also [Meyer93].

To conclude this chapter, we will look at an example illustrating the need to
specify global invariants. Further we will briefly look at alternative formalisms for
specifying the behavior of collections of objects, and in particular we will explore
the interpretation of contracts as behavioral compositions.

Global invariants Invariants specify the constraints on the state of a system
that must be met for the system to be consistent. Clearly, as elementary logic
teaches us, an inconsistent system is totally unreliable.

Some inconsistencies cannot be detected locally, within the scope of an object,
since they may be caused by actions that do not involve the object directly. An
example of a situation in which an externally caused inconsistent object state may
occur is given in slide ??. (The example is taken from [Meyer93], but rephrased
in C++.)

When creating an instance of A, the forward pointer to an instance of B is still
empty. Hence, after creation, the invariant of the object is satisfied. Similarly
when, after creating an instance of B, this instance is attached to the forward
pointer, and as a consequence the object itself is attached to the backward pointer
of the instance of B. After this, the invariant is still satisfied. However, when a
second instance of A is created, for which the same instance of B is attached to
the forward pointer, the invariant for this object will hold, but as a result the
invariance for the first instance of A will become violated. See below.

A al, a2; B b;
al.attach(b);
a2.attach(b); // violates invariant al

This violation cannot be detected by the object itself, since it is not involved
in any activity. Of course, it is possible to check externally for the objects
not directly involved whether their invariants are still satisfied. However, the
cost of exhaustive checking will in general be prohibitive. Selective checking is
feasible only when guided by an adequate specification of the possible interferences
between object states.

Specifying interaction Elementary logic and set-theory provide a powerful
vehicle for specifying the behavior of a system, including the interaction between
its components. However, taking into account that many software developers
prefer a more operational mode of thinking when dealing with the intricacies of
complex interactions, we will briefly look at formalisms that allow a more explicit

Problem - dynamic aliasing 0-1

class A {

public:

A() { forward = 0; }

attach(B* b) { forward = b; b-jattach(this); }

bool invariant() {
return forward
}

private:

B* forward;

};

forward-; backward == this;

class B {

public:

B() { backward = 0; }

attach(A* a) { backward = a; }

bool invariant() {
return !backward —— backward-; forward == this;
}

private:

A* backward;

};

Slide 0-1: Establishing global invariants

specification of the operational aspects of interaction and communication, yet
support to some extent to reason about such specifications. See slide 77.

In [HHG90], a notion of behavioral contracts is introduced that allows for
characterizing the behavior of compositions of objects. Behavioral contracts fit
quite naturally in the object oriented paradigm, since they allow both refinement
and (type) conformance declarations. See below. Somewhat unclear, yet, is what
specification language the behavioral contracts formalism is intended to support.
On the other hand, from an implementation perspective the interactions captured
by behavioral contracts seem to be expressible also within the confines of a class
system supporting generic classes and inheritance.

A similar criticism seems to be applicable to the formalism of (role) scripts as
proposed in [Francez]. Role scripts allow the developer to specify the behavior of
a system as a set of roles and the interaction between objects as subscribing to a
role. In contrast to behavioral contracts, the script formalism may also be applied
to describe the behavior of concurrently active objects. In particular, the script
formalism allows for the specification of predefined initialization and termination
policies and for the designation of a so-called critical role set, specifying the
number and kind of participants minimally required for a successful computation.

Also directed towards the specification of concurrent systems is the multi-

Specifying behavioral compositions 3

Contracts — behavioral compositions 0-2

e specification, refinement, conformance declarations

Scripts — cooperation by enrollment

e roles, initialization/termination protocols, critical role set

Multiparty interactions — communication primitive

e frozen state, fault-tolerance, weakening synchrony

Joint action systems — action-oriented

e state charts, refinement, superposition

Slide 0-2: Specifying interactions

party interactions formalism proposed in [Evangelist], which is centered around
a (synchronous) communication primitive allowing multiple objects to interact
simultaneously. The notion of frozen state (which may be understood as an in-
variance requirement that holds during the interaction) may be useful in particular
for the specification of fault-tolerant systems. An interesting research issue in this
respect is to what extent the assumption of synchrony may be weakened in favor
of efficiency.

A rather different orientation towards specifying the interaction between col-
lections of concurrently active objects is embodied by the joint action systems
approach described in [Kurki]. Instead of relying on the direct communication
between objects, joint action systems proceed from the assumption that there
exists some global decision procedure that decides which actions (and interactions)
are appropriate.

Joint action systems

action service() by client c; server s is
when c.requesting && s.free do
<body>

Slide 0-3: Specifying actions — example

An example of an action specification is given in slide ??. Whether the service
is performed depends upon the state of both the client and the server object
selected by the action manager. [Kurki] characterize their approach as action-
oriented to stress the importance of specifying actions in an independent manner
(as entities separate from classes and objects). An interesting feature of the joint
action systems approach is that the behavior of individual objects is specified by
means of state charts, a visual specification formalism based on [Harel87]. The

specification formalism adopted gives rise to interesting variants on the object-
oriented repertoire, such as inheritance and refinement by superposition. From a
pragmatic viewpoint, the assumption of a global manager seems to impose high
demands on system resources. Yet, as a specification technique, the concept of
actions may turn out to be surprisingly powerful.

In summary, this brief survey of specification formalisms demonstrates that
there is a wide variety of potentially useful constructs that all bear some relevance
to object-oriented modeling, and as such may enrich the repertoire of (object-
oriented) system developers.

Contracts as protocols of interaction Contracts as supported by Eiffel and
Annotated C++ are a very powerful means of characterizing the interaction be-
tween a server object and a client object. However, with software becoming
increasingly complex, what we need is a mechanism to characterize the behavior
of collections or compositions of objects as embodied in the notion of behavioral
contracts as introduced in [HHG90].

A contract (in the extended sense) lists the objects that participate in the
task and characterizes the dependencies and constraints imposed on their mutual
interaction. For example, the contract model-view, shown below (in a slightly
different notation than the original presentation in [HHG90]), introduces the
object model and a collection of view objects. Also, it characterizes the minimal
assumptions with respect to the functionality these objects must support and it
gives an abstract characterization of the effect of each of the supported operations.

contract model-viewj V j { MV(C) 0-4

subject : model supports |

state : V;

value(val : V) — [state = vall; notify();
notify() — Vv € views e v.update();
attach(v : view) — v € views;

detach(v : view) — v £ views;

]

views : setjview; where view supports |
update() +— [view reflects state];
subject(m : model) — subject = m;

]

invartant:

V v e views o [v reflects subject.state]
instantiation:

YV v € views e subject.attach(v) & v.subject(subject);
subject.notify();

}

Slide 0-4: The Model-View contract

To indicate the type of variables, the notation v : type is used expressing that

Specifying behavioral compositions 5

variable v is typed as type. The object subject of type model has an instance
variable state of type V that represents (in an abstract fashion) the value of the
model object. Methods are defined using the notation

e method — action

Actions may consist either of other method calls or conditions that are considered
to be satisfied after calling the method. Quantification as for example in

eV v ¢ views o v.update()

is used to express that the method update() is to be called for all elements in
VIEeWSs.

The model-view contract specifies in more formal terms the MV part of the
MVC paradigm discussed in section ??. Recall, that the idea of a model-view
pair is to distinguish between the actual information (which is contained in the
model object) and the presentation of that information, which is taken care of by
possibly multiple view objects.

The actual protocol of interaction between a model and its view objects is
quite straightforward. Each view object may be considered as a handler that must
minimally have a method to install a model and a method update which is invoked,
as the result of the model object calling notify, whenever the information contained
in the model changes. The effect of calling notify() is abstractly characterized as
a universal quantification over the collection of view object. Calling notify() for
subject results in calling update() for each wiew. The meaning of update() is
abstractly represented as

e update() — [view reflects state];

which tells us that the state of the subject is adequately reflected by the view
object.

The invariant clause of the model-view contract states that every change of
the (state of the) model will be reflected by each view. The instantiation clause
describes, in a rather operational way, how to initialize each object participating
in the contract.

In order to instantiate such a contract, we need to define appropriate classes
realizing the abstract entities participating in the contract, and further we need to
define how these classes are related to their abstract counterparts in the contract
by means of what we may call, following [HHG90], conformance declarations.
Conformance declarations specify, in other words, how concrete classes embody
an abstract role, in the same sense as in in the realization of a partial type by
means of inheritance.

