
1

0.1 On the notion of behavior

The assertion logic presented in the previous section allows us to reason about the
behavior of a system without explicitly generating the possible sequences of states
resulting from the execution of the program. However, underlying the inference
rules of our assertion logic we need a mathematical model for the operational
behavior of a system.

An operational model is needed to prove the soundness of the inference rules.
Further, an operational model may aid in understanding the meaning of particular
language constructs and their associated correctness rules. In the following we
will sketch the construction of a transition system modeling the behavior of an
object-based program. Studying the formal semantics is relevant to understanding
object orientation only in so far as it provides a means with which to characterize
the desired behavior of object creation and message passing in an unambiguous
manner.

Transition system A transition system for a program is a collection of rules
that collectively describe the effect of executing the statements of the program.
A labeled transition system is one that enables us to label the transition from one
state to another by some label indicating the observable behavior of a program
step.

In the transition system defined below, we will employ states φ, which may be
decorated by object identifiers α, as in φα. Object identifiers are created when
creating a new instance of an object type τ . We assume newly created object
identifiers to be unique.

We assume that each object type τ has a constructor (which is a, possibly
empty, statement that we write as Sτ ) and an arbitrary number of methods m.
Each method m is assumed to be defined by some statement, which we write as
Sm(e), for method calls of the form m(e). Also we allow an object α of type τ
to have attributes or instance variables v that may be accessed (read-only) as α.v
for an object identifier α or x .v for an object variable x (which must have α as
its value).

To determine the visible behavior of a program, we will employ labels of the
form α (to denote the creation of an object α) and mα (to indicate the invocation
of a method m for object α). We allow transitions to be labeled by sequences of
labels that we write as λ and which are concatenated in the usual way.

We will define a transition system for a simple language of which the syntax
is defined in slide 0-1.

Expressions are either local variables v or object instance variables that we
write as x .v , where x is an object variable. As elementary statements we have
v = e (indicating the assignment of (the value of) an expression e to a local
variable v), x = new τ (which stands for the creation of a new object of type
τ), and x .m(e) (which calls a method m with arguments e for object x). The
object variable x is associated with an object identifier α by the state φ in which
the statement in which x occurs is executed. As compound statements we have
an empty statement ε (which is needed for technical reasons), an elementary


	On the notion of behavior

