
1

Web applications

The explosive growth of the Web is perhaps the single most important event in
the history of computing technology. What started as an information infrastruc-
ture is now turning into an infrastructure encompassing both information and
applications, and is becoming the backbone for the commercial deployment of the
Internet.

Web Applications 12

• objects and the Web

• Web application development – tools and environments

• DejaVU - Web applications with hush

• software architectures for the Web

Additional keywords and phrases: Web Objects, XML, Java, CORBA,
multimedia, software architecture

1-1

Slide 1-1: Web applications

In this chapter, we will explore how the Web affects (object-oriented) software
development. First of all, we will discuss whether object orientation has any
relevance for the Web and for the development of Web applications. We will look
at some of the current trends and technologies, discuss the possible occurrence of
the Object Web, and look at an example deploying Web technology to provide
an infrastructure for distributed object computing. We will reflect on the com-

1



2 Web applications

putation model underlying the Web, to explore how to program the Web to suit
our needs. We will also look at the phenomenon of intelligent agents on the Web,
which may aid the user in retrieving the right information and perform his/her
tasks in a more convenient way. We then present some of our early research
on extending the Web with multimedia fuctionality, carried out in the DejaVU
project at the Vrije Universiteit. Concluding this chapter, and the book, we will
discuss the forces that play a role in defining a suitable software architecture for
(object-oriented) Web applications.

1.1 Objects and the Web

The Web originated from an initiative at CERN, nicknamed the World Wide Web
(WWW), to provide an infrastructure for the exchange of information between
scientists. Undoubtedly, the initiative succeeded beyond expectation. As de-
scribed by [Practice], at the time there were other such initiatives. Nevertheless,
the effort at CERN contained two novel ideas: the use of hypertext, to allow
for easy navigation between documents, and the deployment of a client/server
architecture, to separate presentation from the delivery of documents.

1-2

Slide 1-2: Client/server pair

Among the original requirements of the WWW was extensibility. As slide
?? indicates, which is an adapted rendering from a chapter about the Web
in [Practice], both the browser (client) and the (HTTP) server may be extended
with, respectively, additional viewers on the client side and arbitrary programs
through the Common Gateway Interface (CGI) on the server side. Together with
these extensions the original infrastructure, which consists of HTML (Hypertext
Markup Language) as the document format and HTTP (Hypertext Transfer
Protocol) for the transport of documents, proved to be sufficient for the Web
to be widely adopted. In retrospect, one may wonder why the Web was not
based on, for example, distributed object technology or remote procedure calls.
Accepting the Web as it is, we may still ask ourselves what role objects may play
in developing Web applications.



Objects and the Web 3

1.1.1 Trends and technologies

The Web came as a surprise, both to the hypertext community and to the
distributed systems community. As a surprise because, despite its simplicity,
or probably because of its simplicity, the adoption of the Web is unsurpassed, in
absolute volume and growth rate. Its simplicity lies both in terms of the underly-
ing TCP/IP-based HTTP transport protocol, and the (conceptual) functionality
of the HTML hypertext format, which more or less defines the services offered by
the Web.

Transport and Services

Web Corba
Services HTML IDL

Transport HTTP ORB/IIOP

Alternatives

• ANSAWeb – CORBA-based Web infrastructure

• WebBroker – HTTP as a transport protocol for ORBs

• orblets – Java applets with ORB

1-3

Slide 1-3: Transport and services

It is probably not an exaggeration to say that the entire academic community
was shocked to see the sudden mass-scale adoption of a technology that was only
a shallow reflection of the original conceptions of globally distributed systems
and hypermedia. Not surprisingly, however, academia and other research and
development institutes reacted to the Web by redirecting their research programs,
in order to jump on the wagon.

1-4

Slide 1-4: Java applet with ORB

As an example, in the August/September 1996 issue of the Object Expert
(Europe) the question was posed ‘How to survive the Internet revolution?’. In



4 Web applications

answer to that question, the Web was first criticized for offering a monolithic
HTML/HTTP-based structure that gave rise to many proprietary extensions.
Then, as a solution, CORBA was praised as an infrastructure that allows for the
creation of well-behaved extensions through the use of IDL. The most radical
alternative, indeed, would be to base the Web entirely on CORBA, of which the
ANSAWeb proposal is an example. A rather different route is to adopt HTTP as
the transport protocol for object request brokers and turn the Web into a global
infrastructure for distributed object computing, as for example suggested in the
WebBroker proposal that will be discussed later. A more modest, and realistic,
approach is to enhance Java applets with the capability to connect with CORBA
servers, as indicated in slide ?? and slide ??. In slide ??, we see a browser with
an HTML page that contains a Java applet, which may connect through an ORB
directly to, for example, a database server. Alternatively, a request may pass
through a CGI process to an ORB attached to the HTTP server.

1-5

Slide 1-5: Processing steps

In more detail, when we look at the processing steps, as depicted in slide ??,
we may distinguish between

1. get the HTML page,

2. load the applet,

3. start the applet,

4. connect to a CORBA server from the applet,

5. get access to the remote objects,

6. connect optionally to a database, and

7. send output either in HTML format or directly to the applet.

Based on this setup, we may think of several alternatives and refinements,
as for example the use of Java RMI or an extension of the Java ORB with full
server functionality, to allow for callbacks from the objects (server) to the client
(applet).



Objects and the Web 5

The WebBroker proposal In the scenario sketched above, Java and CORBA
were used to extend the basic functionality of the Web. In a similar vein, Microsoft
DCOM, as an alternative distributed object technology, might have been used to
incorporate objects in the Web. The WebBroker proposal, as explained in the
technical note submitted to the W3C, 11 May 1998, attempts to unify distributed
object technology and the Web publishing infrastructure by providing a common
Web computing standard based on HTTP and XML. (XML, the eXtendable
Markup Language, may be considered as a lightweight version of SGML, suitable
for the description of the structure and content of arbitrary documents.) The
objective of the WebBroker is, as stated in the proposal, to have a system which
is less complicated than the OMG CORBA and Microsoft COM+ distributed
computing systems and which is more powerful than HTML forms and CGI. The
principal advantage of the WebBroker approach is that it is Web-native. However,
with the universal adoption of IIOP, which is now also the transport protocol of
Java RMI, the advantage of a more efficient protocol gains more weight.

1.1.2 The Object Web – CORBA/Java versus Microsoft

No doubt, the Object Web is coming, as testified by the appearance of the Object
Web Survival Guide, see [OWSurvival].

1-6

Slide 1-6: Client-Server/CGI

To state the argument for the Object Web once more, as depicted in slide ??
what we have, basically, is a client/server architecture of which the server-side
may be arbitrarily extended with CGI-processes. However, CGI extensions are
slow, they do not scale and, most important, they do not allow for state unless
unreliable programming tricks such as cookies are used. Now, according to (the
ads for) [OWSurvival], there are two camps: Microsoft and Everyone Else. We
will start with the latter, which we will refer to as the Java/CORBA Web.

The Netscape way – Java/CORBA Web

When we consider the browser market, there are at the time of writing two major
players, Netscape and Microsoft. Although Netscape is certainly not the only
company selling Web servers, we will nevertheless take Netscape as representing
everyone else to see how the Java/CORBA Web may take shape.

First of all, it must be noted that Netscape made a serious commitment to
CORBA and IIOP. For example, all Java CORBA support classes are shipped
with their browser. Secondly, as indicated in slide ??, we may observe that



6 Web applications

1-7

Slide 1-7: Content store

the functionality of Web servers has been significantly enhanced since the begin-
ning days of the Web. Facilities for publishing, (intelligent) agents, search and
management are now more or less standard commodities provided on top of a
programmable content store, running on a variety of operating systems.

In slide ??, an architectural overview is given of one of the earlier versions
of the Netscape Enterprise Server. When going from the top to the bottom, we
see that content may be delivered in a variety of formats, including Java applets,
Javascript, plain HTML, some legacy plugin format or any combination thereof.
See section ?? for a discussion of plugins. More to the bottom, Netscape offers
LiveConnect technology to allow (client) components to interact. For example,
a Java applet or a plugin may be addressed from Javascript code. In addition,
there is IIOP to connect to CORBA-enabled servers.

1-8

Slide 1-8: Netscape Enterprise Server

For programming server facilities, Netscape offered the Internet Foundation
Classes as part of the Open Network Environment (ONE), which is based on
standards such as SMPT, HTTP and SQL. However, the Internet Foundation
Classes for Java have become part of the Java Foundation Classes that are de-
livered with Java 1.2. Server facilities include messaging, content store, database
access and state management. Additional components may be provided either as



Objects and the Web 7

server extensions through the NSAPI, or through CORBA IIOP. For the actual
creation of content and the deployment of all that technology, there is a large
variety of tools from Netscape and other vendors, and plenty of documentation
that may be obtained from Netscape’s Web site.

The Microsoft way – DNA

It is interesting to note that Microsoft’s commitment to the Web came relatively
late. Nevertheless, there is no doubt that Microsoft recognizes the importance of
the Internet and the Web as the infrastructure of what it calls the Digital Nervous
System of corporations.

1-9

Slide 1-9: Business logic

In February 1999, I had the pleasure of hearing Bill Gates speak about the
Digital Nervous System, as a unifying concept for corporations to execute and
record transactions electronically, and as a means to create corporate awareness
of the actual state of business and current business goals. I found this view
quite appealing, although the complexity involved in the actual archiving, search,
retrieval and presentation of such material is quite immense. Ideally, as depicted
in slide ??, central to any corporate information structure must be the business
logic that governs the policies and information needs of the organization. At
the backend of the system we may have a database, legacy systems, or external
applications delivering information. For end-users, depending on the particular
architecture chosen, there may be thin or fat clients giving access to the informa-
tion and communication facilities.

To turn to actual technology, Microsoft’s proposal to realize their vision is the
Microsoft Dynamic Networking Architecture (DNA), of which the basic compo-
nents are given in slide ??. In the column on the left, we have the presentation
facilities, ranging from (dynamic) HTML to Win32 applications, going from thin
to fat, indeed. In the business logic column, we have COM+ (which is the followup
on (D)COM), the Microsoft Message Queue Server (MSMQ), and the Internet
Information Server, which is a powerful server that allows for server-side scripting,
Active Server Pages (ASP), and COM-based objects. For handling data, Microsoft
offers the ActiveX Data Objects format (ADO), OLE-DB to connect to databases,
and XML. It must be noted here that Microsoft is actively engaged in promoting
XML as a data interchange standard, in cooperation with the W3C. In summary,
Microsoft DNA offers Presentation Services, Application Services, Data Services



8 Web applications

1-10

Slide 1-10: Microsoft DNA

and System Services. In addition, Microsoft offers an appealing suite of tools
collected in the Visual Studio, including Visual C++, Visual Basic and Visual
Interdev, for creating dynamic data-driven Web applications. Although I do not
intend to make this sound like an ad, it cannot be denied that Microsoft is a
serious player!

1.2 Programming the Web – a search for APIs

Leaving the Object Web for what it is, in construction obviously, we may raise the
question as to what support should be provided for developing Web applications
that are more finely tuned to the needs of end-users. To answer this question,
or more appropriately, to gain insight into the requirements and state-of-the-art
technology that was available, I organized a series of two workshops, one for the
WWW5 Conference, entitled ‘Programming the Web – a search for APIs’, and
one for the WWW6 Conference, entitled ‘Logic Programming and the Web’. In
this section we will discuss some of the issues treated in these workshops. In
particular, we will reflect on the computation model underlying the Web, taking
the views of Luca Cardelli presented at the WWW5 workshop as a starting point,
to establish general requirements for APIs for programming the Web. Then we
will look at another interesting phenomenon, intelligent agents on the Web, and
discuss what would constitute a suitable framework for agent technology.

1.2.1 Models of computation

The Programming the Web workshop was intended to focus on concepts and
requirements for high-level APIs suitable for developing Web-aware applications.
The papers that were submitted, which are available on the CDROM accompa-
nying this book, covered a wide range of interests, including computation models,
applications and user requirements, software architectures and libraries, as well
as heuristics and guidelines for API developers.

The kickoff for the workshop was given by Luca Cardelli, who raised the
question ‘What is the Web’s model of computation?’. This question appeared



Programming the Web – a search for APIs 9

Complaints

• lack of referential integrity

• undetected failures

• no control over quality of service

Observations

• dynamic quality of services

• complex interaction

Requirements

• uniformity, openness, flexibility, orthogonality, layered

Behavior

• reliable, configurable, monitoring, notification, thread-safe

Answers

• object-oriented, components, virtual APIs, callbacks, plug-ins

1-11

Slide 1-11: Requirements for APIs

to be of critical importance for understanding the requirements for APIs and
for evaluating possible solutions. In summary, we may observe that there is
some notion of global computation for the Web, but that computation on the
Web is fraught with many obstacles, such as the lack of referential integrity (e.g.
dead links), unreliable services (both in availability and quality), failures (due to
servers or network congestion). What we need, in conclusion, is some (formal)
model of computation that captures these properties. In addition, we need to
be able to deal with such properties in our Web programs, for example we may
wish to anticipate on the possible unavailability of a Web server, and provide
an alternative in that case. In slide ??, an overview is given of the complaints
about the functionality of the Web, observations concerning its ‘nature’, general
requirements for open systems development, a wish-list of desired behavioral
characteristics and potential (technological) answers.

Not surprisingly, there did not seem to be a canonical approach to the def-
inition and development of APIs and Web applications, perhaps not in the last
place because the demarcation between computation models, languages and APIs
is not clear-cut. Nevertheless, as summarized in slide ??, it seemed clear that we
need to define a suitable computation model as well as (abstract) object models
that capture the requirements for resources and application domains (such as for
example e-commerce). In addition we must distinguish between client and server
perspectives, with autonomous (intelligent) agents as a possible third perspective.
And, naturally, our own (technological) interests play a role as well, to the
extent that it may determine possible solutions. Considering the basic needs
for the development of Web-aware applications, as expressed by the workshop’s
participants, which ranged over resolving URLs, billing and payment facilities, and
quality of service constraints, we may observe that facilities for Web programming
are nowadays as a standard provided (as extensions) by languages such as Tcl,



10 Web applications

Actions

• define a distributed model of computation that suits the Web.

• define canonical (language-independent?) object models for ...
resources, application domains ...

Perspectives

• servers - extensions

• browsers - clients, viewers, configuration

• agents - e.g. payment

Interests

• distributed objects

• plugin components

• formalization of requirements and solutions

1-12

Slide 1-12: Dimensions of APIs

Perl, Python and Java. More domain-specific facilities are being developed in a
CORBA context, or for frameworks such as San Francisco.

Document Object Model

Client-side scripting has been popularized by Dynamic HTML (DHTML) as
originally introduced by Netscape and Microsoft. Nevertheless, scripting facilities
are not standard accross the various browsers. To remedy this situation, the
W3C has developed a recommendation for a Document Object Model (DOM), that
provides a standard application programmer interface to access the structure and
content of HTML and XML Web pages. The DOM allows XML and HTML pages
to be treated in an object-oriented way, providing facilities for access, navigation
and manipulation.

1-13

Slide 1-13: Hierarchical structure of DOM

Since XML is increasingly being used for other applications, such as Electronic
Data Interchange (EDI), the DOM may in effect provide a foundation for devel-
oping Web applications. The W3C DOM Recommendation provides interfaces,
described in a language and platform-independent way in IDL, for the structural
components that may be used in XML and HTML documents, as indicated in slide
??. These interfaces have been refined independently for both XML and HTML,



Programming the Web – a search for APIs 11

to allow programmers to access XML and HTML-specific features. In addition to
the IDL interfaces, a language-binding is specified for ECMAscript, which may
serve as an example for similar bindings for Javascript and other languages, such
as Java.

1.2.2 Intelligent agents

In [Negro], intelligent agents are characterized as autonomous, intelligent pro-
cesses aiding the user in complex tasks, such as answering email, gathering infor-
mation and planning activities. In practice, agents on the Internet may help in
monitoring changes in Web pages, collecting information on topics of interest, or
searching based on personal preferences. See [Agents], [Search]. Other types of
agents, such as the shopping agents described in [Mobile] or even virtual players
as those described in [VR], might become possible in the future. However, despite
the range of possible examples, the notion of intelligent agent is not very clear.
In [Survey], two definitions of agent are given, a soft definition, characterizing
agents as autonomous processes that show some intelligence, and a hard definition
attributing agents with mentalistic properties such as belief, desire and intentions.
At this stage, the hard definition is clearly no more than a metaphor, since there
is no technology that actually supports it. Taking the soft definition, one could
argue that it is (partly) realized by modern object technology, as embodied in
Java and CORBA, omitting the intelligence that is. Whether or not adopting
the agent metaphor, there is definitely a challenge of making applications more
intelligent, and perhaps even more human. Cf. [WebWord] and [Maes]. To
my mind, one fundamental problem that we must solve to realize this goal is to
define the technology, or the combination of technologies, needed to support the
anthropomorphic metaphor of agents. Given the merits of logic programming
in a variety of application areas, encompassing areas such as diagnostic expert
systems, natural language processing, and control systems, it seemed natural
to organize a workshop called Logic Programming and the Web to investigate
how logic programming technology might be deployed to make the Web more
intelligent. Nevertheless, although the presentations at the workshop indicated
that logic programming could fruitfully be applied in for example the creation of
virtual worlds, e-commerce applications, and intelligent rental advisors, it did not
shed any light on how to bridge the gap between the (mentalistic) agent metaphor
and its software realization. In the remainder of this section we will discuss the
Web Agent Support Program research project to delineate the requirements for a
framework providing agent technology support for Web applications.

Web Agent Support Program

The WASP project, of which an outline is given in [WASP], concerns the devel-
opment of Web Agent Support to enable average users to keep track of relevant
information on the Web. The project was envisaged to result in a framework
providing support for:



12 Web applications

• intelligent navigation and information retrieval,

• information and document maintenance,

• user interfaces for Web-aware applications,

• dynamic documents with user-defined applets,

• declarative descriptions of agent behavior based on user preferences,

• declarative modeling of coordinated and cooperative behavior of software
agents, and

• programming single and multi-agent systems.

As an target product for the WASP project, we envisaged developing Pamela
(Personal Assistant for Maintaining Electronic Archives), an application combin-
ing the functional and architectural features mentioned above. In summary, our
project aims at providing insight in and solutions for

• modeling the behavior of cooperating agents,

• generic means for realizing actual agents in a Web-aware context,

• architectural support for programming agent-based systems.

The aspects of our research as indicated above address the problems involved in
defining and realizing the potential of the agent metaphor as a human–computer
interface in the distributed information system domain, in particular the Web.
The architectural requirements for realizing agents in a Web-aware context consist
of (a) high-level support for distribution to allow for notification and the com-
munication between agents, (b) access to the Web both in terms of server-side
and client-side computation, and (c) support for information retrieval and data
management.

Framework components Web-aware agents

• a methodology for developing agent-based applications, as well as

• a logical foundation for modeling agent behavior; and in addition

• guidelines for realizing actual agent applications, and

• software components that can be used as building blocks, including

• a language for programming agent behavior.

1-14

Slide 1-14: Framework components

The WASP project is aimed to result in a framework (in its extended meaning)
for the development of agent-based Web-aware applications. The components



The DejaVU experience – jamming (on) the Web 13

provided by such a framework are listed in slide ??. In addition to the proper
software components, the framework includes a methodology, as well as a logical
foundation. Further we wish to develop guidelines for realizing actual agent appli-
cations, and our hope is to develop a language for programming agent applications,
based on the language DLP, described in appendix ??.

1.3 The DejaVU experience – jamming (on) the Web

The hush library was originally developed to have an easy-to-use and flexible
GUI library for the Software Engineering practicum at the Vrije Universiteit.
New components and extensions were created by students and research assistants,
including components for (Csound-based) music, video, (OpenGL-based) VRML
and MIDI. Since the Web was then in its early stages, we also built a Web browser
and created a number of experimental extensions to enhance the functionality of
the Web with new media and communication facilities. See slide ??.

The DejaVU experience

• Applications and the Web [Applications]

• Bringing music to the Web [Music]

• Chatting on the Web [Chatting]

• Animating the Web [Animate]

• Jamming (on) the Web [Jamming]

1-15

Slide 1-15: The DejaVU experience

Our approach was simple but effective. First we created the components that
provided the desired functionality, then we provided a script interface for these
components, and finally we provided new (HTML-like) tags for the syntactic de-
scription of the new functionality. We used stylesheets to separate the syntactical
description from its operational realization. These stylesheets were written in Tcl.
As the Web was maturing, we did not pursue this line of research. Nevertheless,
since this work still represents a valid approach, we will discuss one of my favorite
extensions, an extension that allows for jamming (on) the Web.

Jamming (on) the Web

Compared to textual and graphical material, the capabilities of the Web for
musical information are rather poor. The embedding of music, or sound in
general, rarely goes beyond links to raw audio and MIDI files or to streamed
audio connections. To display a musical work, HTML authors have to use images
containing the score. All of these solutions are very low level as they basically
regard music as being just sound (or a picture in the case of a score). True score
files are usually a few orders of magnitude smaller, and the audio signal can be



14 Web applications

synthesized at the client side at any appropriate sample rate. Additionally, a
high-level description of music provides the browser with far more information
when compared to the raw samples. In previous work we proposed to transmit
musical scores (instead of the raw samples) across the Internet and to add sound
synthesis functionality to Web browsers, see [Music],

and the use of generic SGML to encode structured documents, see [Animate].
In this section, we describe an experimental framework that offers many of the
ingredients for true networked music support including facilities for editing, dis-
playing and playing musical scores as well as facilities for high-level exchange
of musical material and real-time collaborative work involving music and sound.
Our approach is based on traditional music notation and on MIDI for playing
facilities. The framework builds upon the work done in the DejaVU project at
the Software Engineering section of the Vrije Universiteit, which resulted in a suite
of components for developing distributed Web-aware hypermedia applications.

1-16

Slide 1-16: The score in a plugin

Scores on the Web The most ambitious markup language for the dissemination
of music on the Web is probably the Standard Music Description Language,
described in [SMDL]. SMDL expresses a musical work in terms of four basic



The DejaVU experience – jamming (on) the Web 15

domains. The logical domain – the primary focus of SMDL – is, according to
the standard, describable as ‘the composer’s intentions with respect to pitches,
rhythms, harmonies, dynamics, tempi, articulations, accents, etc.’. The central
element of the logical domain, the cantus element, is an abstract, one-dimensional
finite coordinate space onto which musical and non-musical events can be sched-
uled. This allows for the inclusion of any dependent time sequences (such as auto-
mated lighting information) in a musical work. The standard uses HyTime, [Hy-
Time], hyperlinking to specify the relations with information from the other three
domains: the gestural domain – describing any number of particular performances
(e.g. MIDI files or digital audio) of the work, the visual domain – describing any
number of scores (a printable/displayable version) of the work, and the analytical
domain – comprising any number of theoretical analyses or commentaries about
the information in the three other domains. The addressing power of HyTime
makes it possible to link directly into information expressed in other formats,
including MIDI files, digital audio recordings or specific score notations, without
modification. Our approach is more modest and we deploy a much simpler SGML
representation, primarily geared to encode printable/displayable versions of the
score (i.e. SMDL’s visual domain). However, the format used is sufficiently
rich to be able to generate a playable MIDI representation as well. Information
which is usually added by performers (in SMDL this is represented in the gestural
domain), such as explicit interpretations of tempi, articulations and accents, are
not supported in the current version.

<SCORE>
<TITLE>Corrente</TITLE>
<COMPOSER>Antonio Vivaldi</COMPOSER>
<STAFF>
<MEASURE Sig=”3,4” Key=F Clef=Gclef>
<NOTE Pos=”1,3” Stem=down>d6 4 0
<REST Pos=”3,6”>C6 8 0
<NOTE Pos=”4,6” Stem=up>a5 8 0
<NOTETUPLE Stem=down>
<NOTE Pos=”5,6”>f5 8 0</NOTE>
<NOTE Pos=”6,6”>a5 8 0</NOTE>

</NOTETUPLE>
</MEASURE>
...

</STAFF>
</SCORE>

To support display and editing of SGML scores on the Web, we developed the
Amuse score editor as a plugin for our Web browser (see slide ??). The editor
has a graphical user interface and does not require any SGML knowledge from
the user.

Above is a fragment of an example score file, for which the associated style
sheet with a CSS1-like syntax is shown below. Both documents can be edited
by the graphical score editor plugin. Changes in the style sheet are dynamically



16 Web applications

reflected in the display of the score. A significant enlargement of the page-width
parameter, for example, will allow for more measures on a single staff, and will
result in a redraw of the complete score.

SCORE {
margin-left : 30;
margin-right : 30;
margin-top : 80;
margin-bottom : 20;
page-height : 1000;
page-width : 920;
}
TITLE {

title-align : Center;
title-font : -*-Times-Bold-R-Normal–*-240-*;
}
COMPOSER {

composer-align : Center;
composer-font : -*-Times-*-R-Normal–*-180-*;
}

1-17

Slide 1-17: An associated style sheet

Playing on the Web The playback facilities of our framework are centered
around the MIDI server. After registering as a MIDI client, the score editor
is able to send the generated MIDI version of the score to the separate MIDI
server. The MIDI server builds upon a socket-level client/server library and a
class library that provides the basic functionality for MIDI devices, MIDI clients
and the MIDI server. Note that the audio device is usually an exclusive resource,
and by connecting to a single MIDI server, several client applications can have
simultaneous access to a single MIDI output device. The functionality of the
MIDI server comprises:

• registering and unregistering MIDI devices,

• routing MIDI data between clients and MIDI devices, and

• administration and security checks.

When a MIDI device is registered, a cookie is given out that may be used by
a client to request the server to set up a virtual connection with that device. The
cookie also prohibits unauthorized clients from accessing a MIDI output device.

Collective improvisation We developed the keyboard applet, depicted in slide
??, as an alternative input device to be able to send ‘live’ MIDI data to our server.



The DejaVU experience – jamming (on) the Web 17

Since multiple applications can have access to the MIDI server, a user can have a
score edit session running, and simultaneously be playing a keyboard applet. To
engage in a jam session, the keyboard applet connects to the JamServer instead
of the MIDI server. The JamServer acts as the central point of a jam session,
keeping track of all clients engaged in the session. To start a jam session,

1-18

Slide 1-18: The jam server

all jam clients connect to a single JamServer and send it their MIDI data. The
JamServer is connected to one or more MIDI servers, as depicted in slide ??.

By having the JamServer separate from the MIDI server itself, the latter is
relieved from the burden of jam session management. Every connected MIDI
device will receive all the MIDI data submitted by the jam clients. This data is
relayed to these devices by the MIDI server(s), through the virtual MIDI data
stream that is created when registering as a jam client. In slide ??

we see three jam clients connected to a single JamServer (on machine B).
The MIDI server is running on the same machine as the JamServer. Both the
clients on machine A and C have registered a MIDI-out device (a software sound
synthesis MIDI program developed for Solaris)

with the MIDI server on B. The user on A has additionally registered a MIDI-in
device (the keyboard). Using the keyboard, the user on A can contribute to the
jamming. The score editor on C is directly connected to the MIDI server and
is not engaged in the jam session. The MIDI server will redirect MIDI requests
from the score editor only to the MIDI device on C.

Measurements To give an indication of the speed and response times of our
system, we have used a special jam client, jamping, that measures the average
delay between sending a MIDI message to the JamServer and receiving the same
message on a connected MIDI device. For a 486DX2-66 PC with Linux with
one client and both servers local, this resulted in a round-trip-delay time of 5.5
milliseconds. A similar setup on a Sparc-5 with Solaris resulted in 2.6 milliseconds.
A similar configuration with the JamServer on a LAN gave 3.5 milliseconds



18 Web applications

average round-trip-delay time. Nevertheless, with a server in Amsterdam and a
client in Sweden, we obtained an average round-trip-delay time of 87 milliseconds,
with a peak of 1.6 seconds. Clearly, the length and variability of round-trip-delay
times may be a prohibiting factor for jamming on a global scale.

Architecture of the Web components The software described so far was
developed for our SGML-based Web browser as an extension to the hush class
library, [Animate].

1-19

Slide 1-19: Web components

In slide ?? an overview is given of the basic Web-related components of the
hush library. The browser provides the top-level user interface for all Web compo-
nents, including a viewer, a scrollbar, navigation buttons (back, forward, home,
reload) and an entry box to enter URLs. The netclient, web and MIMEviewer
components form the conceptual base of our approach of connecting to the Web:

• viewer – a widget for the inline display of several MIME types, such as
HTML, VRML and Amuse score formats.

• web – an extension of the MIMEviewer with history and caching.

• netclient – the interface to the Internet, supporting several protocols.

The MIMEviewer component provides an abstract interface to viewers for sev-
eral MIME types. The web widget only knows about the (abstract) MIMEviewer
class while the actual functionality is implemented in several concrete viewer
classes, one per MIME type. Specific viewers for new MIME types can be



Software architectures revisited 19

plugged dynamically into the MIMEviewer object. When the MIMEviewer gets
the instruction to display a document of a certain MIME type, it changes its role
and becomes a viewer for that particular MIME type. This dynamic role-switching
idiom is discussed in more detail in chapter 2. As a result, the addition of new
viewers can be done without changing the web widget. The netclient component
builds the bridge between the local web widget and the World Wide Web by
providing an abstract and uniform interface to network (file) access and transport
protocols. In the realization of the netclient components we have employed the
dynamic role-switching idiom in the same way as in the implementation of the
MIMEviewer components. The web object creates a MIMEviewer object and
tells which role it should play (e.g. SGML, Amuse or VRMLviewer). This role
can be changed during the lifetime of a single MIMEviewer object by calling a
method to change its role. A browser typically uses only one single MIMEviewer
object that changes its role according to the type of data that should be displayed.
The SGMLviewer is the default viewer, it displays generic SGML documents by
using style sheets for each document type. By default, a style sheet for HTML
is used. Since our generic SGMLviewer is better suited to textual documents
and does not offer editing support, we developed a separate viewer/editor to
process our Amuse/SGML score files. Since the MIMEviewer provides no network
functionality at all, it generates events whenever it needs to retrieve data pointed
to by a URL. Such events are generated as a response to user interaction (e.g.
clicking an anchor) or to fetch inline data during the parsing process. These
events are typically handled by the web component which plays a central role
in our approach because it combines the functionality of the MIMEviewer and
the netclient components. Additionally, the web component adds a history and
caching mechanism to the MIMEviewer. The web component’s behavior is similar
to the standard widgets of the hush framework, and can be conveniently used as
a part of an application’s GUI. Because the web widget has both a C++ class
interface and a script interface, it is easy to create, or extend, applications with
Web functionality.

1.4 Software architectures revisited

The Web is, at the time of writing, still in flux. Yet it is becoming more and more
the standard infrastructure on which applications are built. A recurring question
is, ‘how do we build Web applications?’. There is no definite answer to this
question. There is no body of solutions that may serve to indicate proven practice.
But there is, definitely, a convergence towards objectifying, or object-orienting as
it is called in [OOWeb], the Web and its applications. Anyway, the following
quote, taken from [Practice], p. 10, says it all.

It is a brave architect who, in today’s environment, does not develop,
or at least consider, an object-oriented design.

Clearly, the architecture of the technological infrastructure of the Web, as well
as the architecture of Web applications, may benefit from an object-oriented



20 Web applications

approach. Nevertheless, knowing this, we still do not know how to build actual
Web applications.

Architectural software styles class of architectures

• component types – process, event, repository

• runtime relations – topology

• semantic constraints – immutability

• communication and coordination – connectors

1-20

Slide 1-20: Architectural software styles

From the perspective of software architectures, we may ask ourselves what
architectural style, or for that matter which mix of architectural styles, we may
deploy for building such applications. As a reminder, an architectural style, which
characterizes a class of software architectures, consists of a description of the
types of components used (processes, events, repositories), the (runtime) relations
between these components (for example the network topology), possible semantic
constraints (such as the immutability of particular components) and properties
concerning communication and cooperation (such as the connectors or protocols
used).

Themes and variations technological constraints

• OO – simple call and return

• CORBA – independent components

• WWW – data centered

• events – independent components

• logic – virtual machine architecture

1-21

Slide 1-21: Themes and variations

A rather simple-minded categorization of architectural styles, reflecting obvi-
ous technological constraints, is given in slide ??. Each of the styles is charac-
terized by a single phrase capturing a central feature of the style. For example,
an OO approach may be characterized by the fact that it embodies a simple
call and return mechanism, which, by the way, gets its power from the fact
that it concerns methods or, in C++ jargon, virtual functions. Events have
proven to be an excellent means to obtain a high degree of independence between
components. And logic, as has been argumented in section ??, may be used to
promote a clear separation between knowledge-level and system-level aspects of a
system, by embedding a (virtual) logic machine. The categorization is, however,



Software architectures revisited 21

simple-minded because, as we may observe in retrospect, most of the applications
discussed contain elements of at least a couple of the styles mentioned. So, instead
of discussing one style, we need to consider a mix of styles, and determine what
mix of styles may be effectively used to create the applications we have in mind.

The architecture of the Web

To return to the Web, why is the notion of software architecture important?
As indicated in slide ??, for one, the Web is still growing at a rapid rate, and

it is becoming increasingly important economically. So, we are faced with the
problem of managing this growth, and, much sooner than we could have expected,
with the problem of maintaining the applications that populate the Web.

Architectural issues

• managing growth, maintaining installed base

• enhanced functionality – synchronized multimedia

• improved technological infrastructure – HTTP-NG

1-22

Slide 1-22: Architectural issues

Secondly, the Web is continuously enhanced with new functionality, includ-
ing, for example, synchronized multimedia as proposed in the SMIL standard,
see [SMIL]. Consequently, with respect to the technological infrastructure, we
need to be able to accommodate new requirements, such as quality of service,
needed for the timely delivery of multimedia material. And thirdly, many at-
tempts are being undertaken to improve the quality of the infrastructure itself,
as exemplified by the HTTP-NG effort, which aims at higher speeds and a state-
full communication protocol, see [HTTP-NG]. As clearly stated by the Web’s
principal architect, Tim Berners-Lee, graceful extensibility has always been one
of the primary goals in developing the architecture for the Web. In this respect,
the Web differs significantly from other distributed technologies, such as CORBA,
which does not allow for non-compliant extensions. In contrast, the Web does to
a great degree allow for non-compliant extensions simply by ignoring them, until
they become a standard. The challenge, then, from an architectural point of view,
is to come up with better standards and better technologies without sacrificing
the extensibility allowed by non-strict technologies such as HTML and HTTP.

Plugin architectures

To conclude this chapter, I would like to discuss briefly an extension mechanism
that has proved to be invaluable for developing Web applications, the plugin archi-
tecture. Plugin architectures are becoming more and more popular, for ‘ordinary’
tools such as Adobe Photoshop and Macromedia Director. In a Web context, the
most notable examples are Netscape Navigator and Microsoft Internet Explorer,



22 Web applications

which both provide a facility to extend the browser with new functionality that
is available in a dynamically loadable library.

Client NPP/Callbacks Browser NPN/Calls
Instantiation and Destruction Version Info
Stream Notification Stream Creation and Destruction
Reading and Writing Streams StreamAsFile
LiveConnect

Plugin architectures are realized by using callbacks, in the same way as in
object-oriented frameworks. Above, an overview is given of the callback functions
required by the Netscape plugin architecture. These functions must be imple-
mented by the (plugin) client, so that the browser can recognize and activate
the plugin. Such callbacks encompass instantiation and destruction functions,
notification when a stream is ready, functions for reading and writing streams,
and the Live Connect functions, which enable the (plugin) client to communicate
with Javascript functions and Java applets that are currently active. The browser,
in return, provides convenience functions to obtain version information, to create
or destroy streams or to store the contents of a stream in a temporary file. It
should be noted that the actual API for the creation of (Netscape) plugins is not
object-oriented, although a partial class library is available to create plugins in
an object-oriented manner.

Nevertheless, ignoring details, plugin architectures indicate what may become
the dominant paradigm of the future, framework-like environments that are ex-
tensible by components following a clearly defined pattern or protocol; that is to
say, components created according to the principles of object-oriented software
development.

Summary

This chapter discussed the relevance of object-oriented technology to the devel-
opment of Web-applications.

Objects and the Web 1

• trends and technologies – client/server + extensions

• ObjectWeb – CORBA/Java vs Microsoft

1-23

Slide 1-23: Section 12.1: Objects and the Web

In section 1, we looked at trends and technologies, in particular the ongoing
creation of the ObjectWeb, which is essentially an ongoing war between Microsoft
and the rest of the world.

In section 2, we discussed the model of computation underlying the Web. We
looked at the requirements we may have for APIs, and we explored the notion of
intelligent agents on the Web,



Further reading 23

Programming the Web – a search for APIs 2

• models of computation

• intelligent agents

1-24

Slide 1-24: Section 12.2: Programming the Web – a search for APIs

The DejaVU experience – jamming (on) the Web 3

• animating the Web – an SGML-based approach

• bringing music to the Web – data formats + client-side plugin

• jamming (on) the Web – additional communication servers

1-25

Slide 1-25: Section 12.3: The DejaVU experience – jamming (on) the Web

In section 3, some of the research efforts carried out in the DejaVU project
were presented. In particular, we looked at an SGML-based approach to extend
the Web with new media and communication facilities.

Architecture revisited 4

• OO – simple call and return

• CORBA – independent components

• WWW – data centered

• events – independent components

• logic – virtual machine architecture

1-26

Slide 1-26: Section 12.4: Architecture revisited

Finally, in section 4, we discussed some remaining architectural issues. We
concluded that many of the applications discussed in this book draw from a
mixture of technologies and architectural styles.

Further reading

For information concerning the Web, have a look at http://www.w3c.org which
give a detailed account on the history of the Web and many other issues. For
an exposition of the issues and technologies that play a role in the battle for
the ObjectWeb, consult [OWSurvival]. A good introduction to agents and its
associated technology is given in [Survey]. For architectural issues, again, I
recommend [Practice].



24 Web applications

Questions
1. Describe the architecture of the Web. Explain the relevance of

objects for the Web.

2. Sketch the Microsoft approach to the ObjectWeb. Discuss its pros
and cons.

3. In what ways can Java and CORBA be deployed in Web applica-
tions?

4. Indicate how the computation model underlying the Web deviates
from the computation models underlying, respectively, object
systems and client-server systems.

5. What requirements can you think of for libraries or frameworks for
developing Web applications?

6. Discuss the Document Object Model.

7. What are the requirements for a framework supporting intelligent
agents?

8. Explain the issues that arise in extending the Web with additional
media functionality. What solutions can you think of? Can you
give an example?

1-27

Slide 1-27: Questions


