0.1 Themes and variations

Nowadays, many have at least some notion of object orientation. Undergraduate
courses teaching programming in Java are becoming standard practice. And,
in industry and business, object-oriented technology is being adopted on an
increasingly large scale. Nevertheless, to some extent, object orientation is still
an emerging technology with many open questions. So, we will start with a brief
survey of what object orientation is about, what solutions it offers and what is
needed to put these solutions effectively into practice. We will also briefly review
some object terminology, reflect on the notion of object computation, and discuss
design by contract.

Themes and variations 0-1

e abstraction — the object metaphor

e modeling — understanding structure and behavior
e software architecture — mastering complexity

e frameworks — patterns for problem solving

e components — scalable software

Slide 0-1: Themes and variations

Object metaphor In an object-oriented approach, objects are our primary
abstraction device. Objects provide a metaphor that helps us in each phase of the
software life-cycle. During analysis, we may partition the domain into objects,
that have properties, possibly responsibilities, and relations among each other. In
design, objects are our primary unit of decomposition. In our design, objects may
reflect real life entities, such as Employer and Employee, but may also represent
system artefacts, such as stacks or graphics. In actual development, that is in
the implementation, objects are our unit of implementation. Each object itself
may be regarded as a collection of functions. But it is the collection of functions,
and the behavior that they describe, that we take as our unit; not the individual
function.

Modeling Taking objects as the unit of analysis, design and implementation,
allows us to define the structure and behavior of a software system in a natural
way. Nevertheless, although this may at first sight seem to simplify our task, it
does actually become more difficult to develop software. Why? Simply, because it
takes more effort to find the right kinds of objects! It is difficult to arrive at stable
abstractions, to define the corresponding objects, to define the objects’ interfaces
and to define the appropriate relations between the objects, and to implement
them so that everything works. A consequence of adopting an object-oriented
approach is that we have to spend more time in describing and understanding the

structure and behavior of the system, and to learn the formalisms and tools that
enable us to do so.

Software architecture Objects not only provide a metaphor. Objects also
define a computational platform. Computation in an object-oriented system
consists of objects sending messages to one another. This may give rise to very
complicated sequences of instructions, in particular when the system is dependent
on events from the outside, for example the window or network environment. To
master this complexity, we need to think about how objects can be made to
fit together. To benefit from an object-oriented approach, we need to design a
software architecture that defines and regulates the interactions between objects.

Frameworks When does an object-oriented approach pay off? It does pay off
when we have arrived at (more or less) stable abstractions for which we have
good implementations, that may be reused for a variety of other applications.
A framework is a kind of library of reusable objects. However, in contrast with
ordinary software libraries, frameworks may at times take over control. The
best-known examples of frameworks are in the GUI domain; frameworks in other
domains (e.g. the business process domain) are emerging. Using a framework may
simplify your life, since a framework provides generic solutions for a particular
application domain. But the price you pay is twofold. You have to understand
what (patterns of) solutions the framework provides, and you have to comply
with the rules of the game imposed by the framework.

Components Frameworks consist of components. Simplistically, components
correspond to objects in a one-to-one way. However, life is more complicated.
Components usually consist of a collection of objects that provide additional
functionality that allows components to interact together. A typical example of
components are distributed objects, objects that may be accessed over a network.
These objects must have, preferably in a non-visible way, all the functionality
needed to make a network connection and send data (arguments and results) over
a network.

0.1.1 Object terminology

Object-orientation originally grew out of research in programming languages.
The first object-oriented language was Simula. However, Smalltalk may be held
responsible for the initial popularity of the object-oriented approach. The termi-
nology Smalltalk introduced was at the time unfamiliar and, for many, somewhat
hard to grasp. Nowadays, students and IT specialists, have at least heard the
object-oriented jargon. Let’s briefly look at it. See slide ??7. Objects provide
the means by which to structure a system. In Smalltalk (and most other object-
oriented languages) objects are considered to be grouped in classes. A class
specifies the behavior of the objects that are its instances. Also, classes act as
templates from which actual objects may be created. Inheritance is defined for

Themes and variations 3

classes only. From the perspective of design, inheritance is primarily meant to
promote the reuse of specifications.

Object terminology object speak 0-2

e objects — packet containing data and procedures

e methods — deliver service

e message — request to execute a method

e class — template for creating objects

e instance — an object that belongs to a class

e encapsulation — information hiding supported by objects

e inheritance — mechanism allowing the reuse of class specifications
e class hierarchy — tree structure representing inheritance relations

e polymorphism — to hide different implementations behind a
common interface

Slide 0-2: Object terminology

The use of inheritance results in a class hierarchy that, from an operational
point of view, determines the dispatching behavior of objects, that is what method
will be selected in response to a message. If certain restrictions are met (see
sections 7?7, 7?7 and ??), the class hierarchy corresponds to a type hierarchy, speci-
fying the subtype relation between classes of objects. Finally, an important feature
of object-oriented languages is their support for polymorphism. Polymorphism is
often incorrectly identified with inheritance. Polymorphism by inheritance makes
it possible to hide different implementations behind a common interface. However,
other forms of polymorphism may arise by overloading functions and the use of
generic (template) classes or functions. See sections 7?7 and ?7.

Features and benefits of OOP Having become acquainted with the terminol-
ogy of OOP, we will briefly review what are generally considered features and
benefits from a pragmatic point of view. This summary is based on [Pok89]. I
do expect, however, that the reader will take the necessary caution with respect
to these claims. See slide 77.

Both information hiding and data abstraction relieve the task of the program-
mer using existing code, since these mechanisms mean that the programmer’s at-
tention is no longer distracted by irrelevant implementation details. On the other
hand, the developer of the code (i.e. objects) may profit from information hiding
as well, since it gives the programmer the freedom to optimize the implementation
without interfering with the client code. Sealing off the object’s implementation
by means of a well-defined message interface moreover offers the opportunity to

endg AR QIR I (RO TR, SOREBE I o A PRAMCHAL SRR t heir polymor-

phic behavior is due to the dynamic binding of methods to messages. Polymorphic

Features of OOP 0-3

information hiding: state, autonomous behavior
data abstraction: emphasis on what rather than how
dynamic binding: binding at runtime, polymorphism

inheritance: incremental changes (specialization), reusability

Slide 0-3: Features of OOP

object behavior is effected by using methods, or in C++ jargon wvirtual functions,
for which, in contrast to ordinary functions, the binding to an actual function
takes place at runtime and not at compile-time. In this way, inheritance provides
a flexible mechanism by which to reuse code since a derived class may specialize
or override parts of the inherited specification.

Encapsulation and inheritance Object-oriented languages offer encapsulation
and inheritance as the major abstraction mechanisms to be used in program devel-
opment. See slide ?7?. Encapsulation promotes modularity, meaning that objects
must be regarded as the building blocks of a complex system. Once a proper
modularization has been achieved, the implementor of the object may postpone
any final decisions concerning the implementation at will. This feature allows
for quick prototyping, with the risk that the ‘quick and dirty’ implementations
will never be cleaned up. However, experience with constructing object-oriented
libraries and frameworks has shown that the modularization achieved with objects
may not be very stable. Another advantage of an object oriented approach, often
considered to be the main advantage, is the reuse of code. Inheritance is an
invaluable mechanism in this respect, since the code that is reused seldom offers
all that is needed. The inheritance mechanism enables the programmer to modify
the behavior of a class of objects without requiring access to the source code.

OO = encapsulation + inheritance

benefits of OOP

e modularity — autonomous entities, cooperation through exchanges
of messages

e deferred commitment — the internal workings of an object can be
redefined without changing other parts of the system

e reusability — refining classes through inheritance

e naturalness — object-oriented analysis / design, modeling

Slide 0-4: Benefits of OOP

Although an object-oriented approach to program development indeed offers

Themes and variations 5

great flexibility, some of the problems it addresses are intrinsically difficult and
cannot really be solved by mechanisms alone. For instance, modularization is rec-
ognized to be a notoriously difficult problem in the software engineering literature.
Hence, since some of the promises of OOP depend upon the stability of the chosen
modularization, the real advantage of OOP may be rather short-lived. Moreover,
despite the optimistic claims about ‘tuning’ reused code by means of inheritance,
experience shows that often more understanding of the inherited classes is needed
than is available in their specification.

The probability of arriving at a stable modularization may increase when
shifting focus from programming to design. The mechanisms supported by OOP
allow for modeling application oriented concepts in a direct, natural way. But this
benefit of OOP will only be gained at the price of increasing the design effort.

0.1.2 Object computation

Programming is, put briefly, to provide a computing device with the instructions
it needs to do a particular computation. In the words of Dijkstra: ‘Programming
is the combination of human reasoning and symbol manipulation skills used to
develop symbol manipulators (programs). By supplying a computer to such a
symbol manipulator it becomes a concrete one.’ Although we are by now used to
quite fashionable computing devices, including graphic interfaces and multimedia
peripherals, the abstract meaning of a computing device has not essentially altered
since the original conception of the mathematical model that we know as the
Turing machine (see below). Despite the fact that our basic mathematical model
of a computing device (and hence our notion of computability) has not altered
significantly, the development of high level programming languages has meant a
drastic change in our conception of programming. Within the tradition of impera-
tive programming, the introduction of objects, and object-oriented programming,
may be thought of as the most radical change of all. Indeed, at the time of
the introduction of Smalltalk, one spoke of a true revolution in the practice of
programming.

the object model

e computation is sending messages between objects o
message
e object method arguments
encapsulation
e objects encapsulate data and procedures
protocol

e the collection of messages an object supports

Slide 0-5: The object model

The object model introduced by Smalltalk somehow breaks radically with
our traditional notion of computation. Instead of regarding a computation as
the execution of a sequence of instructions (changing the state of the machine),
object-based computation must be viewed as sending messages between objects.
Such a notion of computation had already been introduced in the late 1960s in
the programming language Simula (see Dahl and Nygaard, 1966). Objects were
introduced in Simula to simulate complex real-world events, and to model the
interactions between real-world entities. In the (ordinary) sequential machine
model, the result of a computation is (represented by) the state of the machine at
the end of the computation. In contrast, computation in the object model is best
characterized as cooperation between objects. The end result then consists, so to
speak, of the collective state of the objects that participated in the computation.
See slide ?77.

Operationally, an object may be regarded as an abstract machine capable
of answering messages. The collection of messages that may be handled by an
object is often referred to as the protocol obeyed by the object. This notion was
introduced in the Smalltalk programming environment originally to provide the
means to group the messages to which an object may respond. For instance, the
distinction between methods for initialization and methods for modification or
processing may be convenient in developing or using a program. The notion of
protocol may also be given a more formal interpretation, as has been done for
instance in the notion of contracts (introduced in Eiffel) stating the requirements
that must be adhered to in communicating with an object. Structurally, an object
may be regarded as a collection of data and procedures. In principle, the data
are invisible from the outside and may be manipulated only by invoking the
right procedure. In a pure object-oriented language such as Smalltalk and Eiffel,
sending a message to an object is the only way of invoking such a procedure.
Combined, data-hiding and message interface abstraction will be referred to as
encapsulation. Actually, object-oriented languages, while in some way supporting
objects as collections of data and procedures, may differ subtly in the degree and
way in which they support data-hiding and abstraction.

Computability and complexity Mathematically, a computing device consists
of a finite table of instructions and a possible infinite memory in which to store
intermediate results. In order to perform a computation the device also needs
an input and some means by which to display the results. For now, we need not
be concerned with the precise mathematical details of our model of a computing
device. For a very much more precise and elaborate description of the Turing
machine, the interested reader is referred to [Hopcroft]. What is important,
however, is that this model captures in a very precise sense the notion of com-
putation, in that it allows us to characterize what can be computed, and also
what a computation will cost, in terms of computing time and memory usage.
An interesting, but perhaps somewhat distressing, feature of the Turing machine
model is that it is the strongest model we have, which means that any other
model of computation is at best equivalent to it. Parallel computation models in
effect do extend the power of (sequential) Turing machines, but only in a linear

Themes and variations 7

relation with the number of processors. In other words, the Turing machine
defines what we may regard as computable and establishes a measure of the
complexity of a computation, in space and time. The awareness of the intrinsic
limitations imposed by a precise mathematical notion of computability has, for
example, led us to regarding the claims of artificial intelligence with some caution,
see [Rabin74]. However, the theoretical insight that a problem may in the worst
case not be solved in finite time or space should not hinder us in looking for
an optimal, approximate solution that is reachable with bounded resources. An
equally important feature of the Turing machine model is that it gives us an
illustration of what it means to program a computing device, that is to instruct
the machine to perform actions dependent on its input and state. As an extension
to the model, we can easily build a universal computing device, into which we
may feed the description of some particular machine, in order to mimic the
computation of that machine. Apparently, this gives us a more powerful machine.
However, this has proven not to be the case. Neither does this universal device
enlarge the class of computable problems, nor does it affect in any significant

sense the computational complexity of what we know to be computable. See slide
79

Computing devices 0-6

e mathematical model — Turing machine
e universal machine — machines as programs
e computability & complexity — time/space bounded

Object-oriented programming does not enlarge the class of computable
problems, nor does it reduce the computational complexity of the
problems we can handle.

Slide 0-6: Computing devices

Interestingly, there is an extension of the (basic and universal) Turing machine
model that allows us to extend the narrow boundaries imposed by a mathematical
characterization of computability. This extension is known as an oracle machine,
and as the name suggests, the solution to an (otherwise) intractable problem
must come from some external source, be it human, machine-like or divine (which
is unlikely). Partly, this explains why intelligent systems (such as automatic
translation systems) are, to a certain extent, intrinsically interactive, since only
the human user can provide the (oracle) information needed to arrive at a solution.
Our model of a computing device does quite precisely delimit the domain of com-
putable problems, and gives us an indication of what we can expect the machine
to do for us, and what not. Also, it illustrates what means we have available to
program such a device, in order to let it act in the way we want. Historically, the
Turing machine model may be regarded as a mathematical description of what is
called the Von Neumann machine architecture, on which most of our present-day
computers are based. The Von Neumann machine consists of a memory and a

processor that fetches data from the memory, does some computation and stores
the data back in memory. This architecture has been heavily criticized, but no
other model has yet taken its place. This criticism has been motivated strongly
by its influence on the practice of programming. Traditionally, programs for the
Von Neumann architecture are conceived as sequences of instructions that may
modify the state of the machine. In opposition to this limited, machine-oriented
view of programming a number of proposals have been made that are intended
to arrive at a more abstract notion of programming, where the machine is truly
at the service of the programmer and not the other way around. One of these
proposals to arrive at a more abstract notion of programming is advocated as
the object-oriented approach. Before studying the intrinsics of the object-oriented
approach, however, it may be useful to reflect on what we may expect from it. Do
we hope to be able to solve more problems, or to solve known problems better? In
other words, what precisely is the contribution of an object-oriented approach?
Based on the characterization of a computing device, some answers are quite
straightforward. We cannot expect to be able to solve more problems, nor can we
expect to reduce the computational complexity of the problems that we can solve.
What an object-oriented approach can contribute, however, is simply in providing
better means with which to program the machine. Better means, to reduce the
chance of (human) errors, better means, also, to manage the complexity of the
task of programming (but not to reduce the computational complexity of the
problem itself). In other words, by providing abstractions that are less machine
oriented and more human oriented, we may enlarge the class of problems that
we can tackle in the reality of software engineering. However, we simply cannot
expect that an object-oriented approach may in any sense enlarge our notion of
what is computable.

Some history In the last few decades, we have been able to witness a rapid
change in the technology underlying our computer systems. Simultaneously, our
ideas of how to program these machines have changed radically as well.

The history of programming languages may be regarded as a progression from
low level constructs towards high level abstractions, that enable the programmer
to specify programs in a more abstract manner and hence allow problem-related
abstractions to be captured more directly in a program. This development to-
wards high level languages was partly motivated by the need to be able to verify
that a program adequately implemented a specification (given in terms of a
formal description of the requirements of an application). Regarded from this
perspective, it is then perhaps more appropriate to speak of a progression of
paradigms of programming, where a paradigm must be understood as a set of
mechanisms and guidelines telling us how to employ these mechanisms. The
first abstraction mechanism beyond the level of assembler language and macros
is provided by procedures. Procedures play an important role in the method of
stepwise refinement introduced by the school of structured programming. Step-
wise refinement allows the specification of a complex algorithm gradually in
more and more detail. Program verification amounts to establishing whether
the implementation of an algorithm in a programming language meets its spec-

Themes and variations 9

ification given in mathematical or logical terms. Associated with the school of
structured programming is a method of verification based on what has become
known as Hoare logic, which proceeds by introducing assertions and establishing
that procedures meet particular pre- and post-conditions. Other developments
in programming language research are aimed at providing ways in which to
capture the mathematical or logical meaning of a program more directly. These
developments have resulted in a number of functional programming languages
(e.g. ML, Miranda) and logic programming languages, of which Prolog is the
best-known. The programming language Lisp may in this respect also be regarded
as a functional language. The history of object-oriented programming may be
traced back to a concern for data abstraction, which was needed to deal with
algorithms that involved complex data structures. The notion of objects, originally
introduced in Simula (Dahl and Nygaard, 1966), has significantly influenced
the design of many subsequent languages (e.g. CLU, Modula and Ada). The
first well-known object-oriented language was Smalltalk, originally developed to
program the Dynabook, a kind of machine that is now familiar to us as a laptop
or notebook computer. In Smalltalk, the data-hiding aspect of objects has been
combined with the mechanism of inheritance, allowing the reuse of code defining
the behavior of objects. The primary motivation behind Smalltalk’s notion of
objects, as a mechanism to manage the complexity of graphic user interfaces, has
now proven its worth, since it has been followed by most of the manufacturers
of graphic user interfaces and window systems. Summarizing, from a historical
perspective, the introduction of the object-oriented approach may be regarded as
a natural extension to previous developments in programming practice, motivated
by the need to cope with the complexity of new applications. History doesn’t stop
here. Later developments, represented by Eiffel, C++ (to a certain extent) and
Java, more clearly reflect the concern with abstraction and verification, which
intrinsically belongs to the notion of abstract data types as supported by these
languages.

0.1.3 Design by Contract

After this first glance at the terminology and mechanisms employed in object-
oriented computation, we will look at what I consider to be the contribution of an
object-oriented approach (and the theme of this book) in a more thematic way.
The term ‘contract’ in the title of this section is meant to refer to an approach
to design that has become known as design by contract, originally introduced in
[Meyer88], which is closely related to responsibility-driven design (see Wirfs-Brock,
1989). Of course, the reader is encouraged to reflect on alternative interpretations
of the phrase responsibilities in OOP.

The approach captured by the term contract stresses the importance of an
abstract characterization of what services an object delivers, in other words what
responsibilities an object carries with respect to the system as a whole. Contracts
specify in a precise manner the relation between an object and its ‘clients’.

Objects allow one to modularize a system in distinct units, and to hide the
implementation details of these units, by packaging data and procedures in a

10

record-like structure and defining a message interface to which users of these units
must comply. Encapsulation refers to the combination of packaging and hiding.
The formal counterpart of encapsulation is to be found in the theory of abstract
data types. An abstract data type (ADT) specifies the behavior of an entity in
an abstract way by means of what are called operations and observations, which
operationally amount to procedures and functions to change or observe the state
of the entity. See also section ?7?7. Abstract data types, that is elements thereof,
are generally realized by employing a hidden state. The state itself is invisible,
but may be accessed and modified by means of the observations and operations
specified by the type. See slide ?77.

Encapsulation

e abstract data types

ADT = state + behavior

Object-oriented modeling

e data oriented

Slide 0-7: Abstract data types — encapsulation

Complex applications involve usually complex data. As observed by [Wirfs89],
software developers have reacted to this situation by adopting more data oriented
solutions. Methods such as semantic information modeling and object-oriented
modeling were developed to accommodate this need. See also sections 77

and ??. Objects may be regarded as embodying an (element of an) abstract
data type. To use an object, the client only needs to know what an object does,
not (generally speaking) how the behavior of the object is implemented. However,
for a client to profit from the data hiding facilities offered by objects, the developer
of the object must provide an interface that captures the behavior of the object
in a sufficiently abstract way. The (implicit) design guideline in this respect must
be to regard an object as a server that provides high level services on request and
to determine what services the application requires of that particular (class of)
object(s). See slide ?7.

Naturally, the responsibilities of an object cannot be determined by viewing
the object in isolation. In actual systems, the functionality required is often depen-
dent on complex interactions between a collection of objects that must cooperate
in order to achieve the desired effect. However, before trying to specify these
interactions, we must indicate more precisely how the communication between a
server and a single client proceeds.

From a language implementation perspective, an object is nothing but an
advanced data structure, even when we fit it in a client-server model. For design,
however, we must shift our perspective to viewing the object as a collection of
high level, application-oriented services. Specifying the behavior of an object

Themes and variations 11

Responsibilities 0-8
e to specify behavior | what rather than how |
Client ‘ client/server model ‘

e makes request to perform a service

Server

e provides service upon request

Slide 0-8: Responsibilities in OOP

from this perspective, then, means to define what specific information the object

is responsible for and how it maintains the integrity of that information. See slide
79

object = information + responsibilities 0-9

Contracts

e a set of services

Behavioral refinement

e improving contracts

Slide 0-9: Contracts and behavioral refinement

The notion of contracts was introduced by [Meyer88] to characterize in a
precise manner what services an object must provide and what requirements
clients of an object must meet in order to request a service (and expect to get
a good result). A contract specifies both the requirements imposed on a client
and the obligations the server has, provided the requirements are met. When
viewed from the position of a client, a contract reveals what the client can count
on when the requirements are fulfilled. From the position of the server, on the
other hand, when a client does not fulfill the requirements imposed, the server
has no obligation whatsoever.

Formally, the requirements imposed on the client and the obligations of the
server can be specified by means of pre- and post-conditions surrounding a method.
Nevertheless, despite the possibility of formally verifying these conditions, the
designer must specify the right contract for this approach to work at all. A
problem of a more technical nature the designer of object-oriented systems faces
is how to deal with inheritance.

Inheritance, as a mechanism of code reuse, supports the refinement of the
specification of a server. From the perspective of abstract data types, we must
require that the derived specification refines the behavior of the original server.

12

We must answer the following two questions here. What restrictions apply, when
we try to refine the behavior of a server object? And, ultimately, what does it
mean to improve a contract?

Behavioral refinement Inheritance provides a very general and powerful mech-
anism for reusing code. In fact, the inheritance mechanism is more powerful than
is desirable from a type-theoretical perspective.

Conformance — behavioral refinement

if B refines A then B may be used wherever A is allowed

Slide 0-10: Behavioral refinement

An abstract data type specifies the behavior of a collection of entities. When
we use inheritance to augment the definition of a given type, we either specify
new behavior in addition to what was given, or we modify the inherited behavior,
or both. The restriction that must be met when modifying behavior is that the
objects defined in this way are allowed to be used at all places where objects of the
given type were allowed. This restriction is expressed in the so-called conformance
rule that states that if B refines A then B may be used wherever A is allowed.
Naturally, when behavior is added, this condition is automatically fulfilled. See
slide ?7.

The conformance rule gives a very useful heuristic for applying inheritance
safely. This form of inheritance is often called ‘strict’ inheritance. However, it is
not all that easy to verify that a class derived by inheritance actually refines the
behavior specified in a given class. Partly, we can check for syntactic criteria such
as the signature (that is, type) of the individual methods, but this is definitely
not sufficient. We need a way in which to establish that the behavior (in relation
to a possible) client is refined according to the standard introduced above. In
other words we need to know how to improve a contract.

Recall that from an operational point of view an object may be regarded
as containing data attributes storing information and procedures or methods
representing services. The question ‘how to improve a contract?’ then boils
down to two separate questions, namely: (1) ‘how to improve the information?’
and (2) ‘how to improve a service?’. To provide better information is, technically
speaking, simply to provide more information, that is more specific information.
Type-theoretically, this corresponds to narrowing down the possible elements of
the set that represents the (sub) type. To provide a better service requires either
relieving the restrictions imposed on the client or improving the result, that is
tightening the obligations of the server. Naturally, the or must be taken as
non-exclusive. See slide ?77.

To improve a contract thus simply means adding more services or improving
the services that are already present. As a remark, [Meyer88] inadvertently uses
the term subcontract for this kind of refinement. However, in my understanding,

Themes and variations 13

attributes

e more information

services

e better services

contracts

e more and better services

A better service
e fewer restrictions for the client

e more obligations for the server

Slide 0-11: Improving services

subcontracting is more a process of delegating parts of a contract to other con-
tractors whereas refinement, in the sense of improving contracts, deals with the
contract as a whole, and as such has a more competitive edge.

Summarizing, at a very high level we may think of objects as embodying a
contract. The contract is specified in the definition of the class of which that
object is an instance. Moreover, we may think of inheritance as a mechanism
to effect behavioral refinement, which ultimately means to improve the contract
defining the relation between the object as a server and a potential client.

Object-oriented modeling 0-12

e prototyping, specification, refinement, interactions

OOP = Contracts + Refinements

Slide 0-12: Object-oriented modeling

To warrant the phrase contract, however, the designer of an object must specify
the functionality of an object in a sufficiently abstract, application-oriented way.
The (implicit) guideline in this respect is to construct a model of the application
domain. See slide ?7.

The opportunity offered by an object-oriented approach to model concepts of
the application domain in a direct way makes an object-oriented style suitable for
incremental prototyping (provided that the low-level support is available).

The metaphor of contracts provides valid guidelines for the design of objects.
Because of its foundation in the theory of abstract data types, contracts may be
specified (and verified) in a formal way, although in practice this is not really

14

likely to occur.

Before closing this section, I wish to mention a somewhat different interpre-
tation of the notion of contracts which is proposed by [HHG90]. There contracts
are introduced to specify the behavior of collections of cooperating objects. See
section 77.

