
1

Idioms and patterns

Object orientation has brought about a radical shift in our notion of software
development. The basic mechanisms of object-oriented programming, encapsu-
lation and inheritance, have clear advantages when it comes to data-hiding and
incremental development.

Idioms and patterns 2

• polymorphism – inheritance and delegation

• idioms – realizing concrete types

• patterns – a catalogue of design patterns

• events – the reactor pattern

Additional keywords and phrases: generic types, assertions, canonical
classes, event-driven computation

1-1

Slide 1-1: Idioms and patterns

However, these basic mechanisms alone do not suffice for the realization of
more complex systems. In this chapter, we will look at idioms and patterns for
object and class composition. Patterns, as originally introduced in [GOF94],
characterize a generic solution to a problem or dilemma in design. Idioms may
be understood as the implementation techniques underlying the realization of
(design) patterns. First we will look at some examples in Java, illustrating the
use of inheritance and delegation for the realization of some simple idioms and

1

2 Idioms and patterns

patterns. Then, we will briefly deal with polymorphism in C++, including the
use of assertions that may be used to enforce contractual obligations. After
discussing some of the idioms and patterns that have been employed in the
hush framework, we will look more closely at the catalogue of design patterns
introduced in [GOF94]. Finally, we will study the reactor pattern as introduced
in [Schmidt95] and briefly explore event-based software architectures.

1.1 Polymorphism

Polymorphism is an intriguing notion. Briefly put, polymorphism is the ability of
a particular entity (which may be an object, a function, or a variable) to present
itself as belonging to multiple types. Object-oriented languages are not unique
in their support for polymorphism, but it is safe to say that polymorphism is an
important feature of object-oriented languages. As explained in chapter ??, poly-
morphism comes in various flavors. With regard to object-oriented languages, we
usually mean inheritance or inclusion polymorphism. Even within this restricted
interpretation, we have to make a distinction between syntactic polymorphism,
which requires merely that interfaces conform, and semantic polymorphism, where
conformance requirements also include behavioral properties. In this section, we
will look at some simple examples in Java that illustrate how we may use the
mechanisms of inheritance and (simple) delegation to define objects that have
similar functionality but differ in the way that functionality is realized. These
examples prepare the way for the more complex idioms and patterns presented
later in this chapter. In the rest of this section we will look briefly at the
polymorphic constructs offered by C++. We will also study how behavioral
conformance can be enforced in C++ by including invariants and assertions. These
sections may be skipped on first reading.

1.1.1 Inheritance and delegation in Java

Consider the example below, an envelope class that offers a message method. In
this form it is nothing but a variation on the hello world example presented in
the appendix.

To illustrate the idea underlying idioms and patterns in its most simple form,
we will refine the envelope class into the collection of classes depicted in slide
1-3. We will proceed in three steps: (1) The envelope class will be redesigned so
that it acts only as an interface to the letter implementation class. (2) Then we
introduce a factory object, that is used to create envelope and letter instances. (3)
Finally, we refine the letter class into a singleton class, that prevents the creation
of multiple letter instances.

Envelope/Letter The Envelope/Letter idiom was introduced in [Coplien92] as
a means to separate interface aspects from implementation aspects. Here the call
to message is simply forwarded to the letter object.

Polymorphism 3

public class envelope { envelope

public envelope() { }

public void message() {
System.out.println(”hello ... ”);
}

};

1-2

Slide 1-2: Hello World

1-3

Slide 1-3: Envelope/Letter Factory

Admittedly, there is no need here to make such a distinction, but the idea
speaks for itself. As you will see, this distinction allows us to change the imple-
mentation without modifying the envelope or interface class.

Factory In the next refinement, we introduce a factory object, that allows us to
create envelope and letter instances without invoking a constructor.

The factory object is used in the envelope class to create a letter. The
advantage here, as will be shown shortly, is that the envelope class does not
need to have any information about the actual type of the letter.

Singleton letter Finally, we refine the letter class into a singleton class. When
you inspect the implementation, you will see that only one instance of a letter will
be created.

Note that the factory object must be modified so that the static method
instance of singleton is invoked instead of the original constructor of letter.

4 Idioms and patterns

public class envelope { envelope

letter impl;
public envelope() {

impl = new letter();
}

public void message() {
impl.message();
}

};

public class letter { letter

public letter() { }

public void message() {
System.out.println(”Message in a letter”);
}

};

1-4

Slide 1-4: Envelope/Letter

Discussion This example, however simple, demonstrates the implementation
of some of the idioms and patterns that will be discussed in the rest of this
chapter. It shows that the basic mechanisms of inheritance and simple delegation
or forwarding are sufficient to implement these idioms and patterns. We have not
discussed yet why we need idioms and patterns, but this will hopefully become
clear later on.

1.1.2 Polymorphism in C++

Polymorphism essentially characterizes the type of a variable, function or object.
Polymorphism may be due to overloading, parametrized types or inheritance.
Polymorphism due to inheritance is often considered as the greatest contribution
of object-oriented languages. This may be true, but the importance of generic
(template) types and overloading should not be overlooked.

In slide ?? some examples are given of declarations involving polymorphic
types. The function print is separately defined for int and float. Also, a generic
list class is defined by means by employing templates. The list may be used for
any kind of objects, for example integers. Finally, a shape class is defined from
which a circle class is derived. An instance of the circle may be referred to by
using a shape pointer, because the type shape encompasses circle objects.

Polymorphism 5

public class factory { factory

public factory() { }

letter letter() { return new letter(); }
envelope envelope() { return new envelope(); }
};

public class envelope { envelope

letter impl;
public envelope() {

factory f = new factory();
impl = f.letter(); // obtained from factory
}

public void message() {
impl.message();
}

};

1-5

Slide 1-5: Factory

The Standard Template Library (STL)

The Standard Template Library for C++ provides a generic library of data struc-
tures to store, access and manipulate data. It is a generic library based on
templates. In fact, it uses templates in such an aggressive way that the C++

standardization committee was forced to reconsider its definition of the generic
template facility in C++. See [STL].

The Standard Template Library (STL) offers containers, to hold objects, algo-
rithms, that act on containers, and iterators, to traverse containers. Algorithms,
which are implemented as objects, may use functions, which are also defined as
objects, overloading the application operator() method. In addition, STL offers
adaptors, to transform objects, and allocators, for memory management. STL is
supported by C++ compilers that adhere to the C++ standard, including Microsoft
Visual C++ and the Cygnus/GNU C++ compilers. A more extensive discussion of
STL is beyond the scope of this book, but the reader is advised to consult [STL],
which gives an introduction to STL and its history, as well as a thorough course
on programming with STL.

1.1.3 Assertions in C++

Whatever support a language may offer, reliable software is to a large extent the
result of a disciplined approach to programming. The use of assertions has long

6 Idioms and patterns

public class singleton extends letter { singleton

static int number = 0;

protected singleton() { }

static letter instance() {
if (number==0) {

theletter = new letter();
number = 1;
}

return theletter;
}

public void message() {
System.out.println(”Message in a letter”);
}

static letter theletter;
};

1-6

Slide 1-6: Singleton letter

since been recognized as a powerful way in which to check whether the functional
behavior of a program corresponds with its intended behavior. In effect, many
programming language environments support the use of assertions in some way.
For example, both C and C++ define a macro assert which checks for the result
of a boolean expression and stops the execution if the expression is false. In the
example below, assertions are used to check for the satisfying of both the pre-
and post-conditions of a function that computes the square root of its argument,
employing a method known as Newton iteration.

In the example, the macro assert has been renamed require and promise to
indicate whether the assertion serves as, respectively, a pre- or post-condition.
As the example above shows, assertions provide a powerful means by which
to characterize the behavior of functions, especially in those cases where the
algorithmic structure itself does not give a good clue as to what the function
is meant to do.

The use of assertions has been promoted in [Meyer88] as a design method
for object-oriented programming in Eiffel. The idea is to define the functionality
of the various methods by means of pre- and post-conditions stating in a precise
manner the requirements that clients of an object must meet and the obligations
an object has when executing a method. Together, the collection of methods
annotated with pre- and post-conditions may be regarded as a contract between

Polymorphism 7

Overloading print

extern void print(int);
extern void print(float);

Generic class – templates list< T >

template¡ class T ¿ class list { ... }
list¡int¿* alist;

Polymorphism by inheritance shape

class shape { ... };
class circle : public shape { ... }
shape* s = new circle;

1-7

Slide 1-7: Polymorphic type declarations

Standard Template Library STL

• containers – to hold objects

• algorithms – act on containers

• iterators – to traverse containers

• functions – as objects

• adaptors – to transform objects

• allocators – for memory management

1-8

Slide 1-8: The Standard Template Library

the object and its potential clients. See section ??. Whereas Eiffel directly
supports the use of assertions by allowing access to the value of an instance
variable before the execution of a method through the keyword old, the C++

programmer must rely on explicit programming to be able to compare the state
before an operation with the state after the operation.

The annotated counter above includes a member function hold to store the
value of its instance variable. It is used in the operator ++ function to check
whether the new value of the counter is indeed the result of incrementing the
old value. Assertions may also be used to check whether the object is correctly
initialized. The pre-condition stated in the constructor requires that the counter
must start with a value not less than zero. In addition, the constructor checks
whether the class invariant, stated in the (virtual) member function invariant, is

8 Idioms and patterns

double sqrt(double arg) { sqrt

require (arg ¿= 0);
double r=arg, x=1, eps=0.0001;
while(fabs(r - x) ¿ eps) {

r=x; x=r-((r*r-arg)/(2*r));
}

promise (r - arg * arg ¡= eps);
return r;
}

1-9

Slide 1-9: Using assertions in C++

satisfied. Similarly, after checking whether the post-condition of the operator ++
function is true, the invariant is checked as well.

When employing inheritance, care must be taken that the invariance require-
ments of the base class are not violated. The class bounded, given above, refines the
class counter by imposing an additional constraint that the value of the (bounded)
counter must not exceed some user-defined maximum. This constraint is checked
in the invariant function, together with the original counter :: invariant(), which
was declared virtual to allow for overriding by inheritance. In addition, the
increment operator ++ function contains an extra pre-condition to check whether
the state of the (bounded) counter allows it to perform the operation. From a
formal perspective, the use of assertions may be regarded as a way of augmenting
the type system supported by object-oriented languages. More importantly, from
a software engineering perspective, the use of assertions is a means to enforce
contractual obligations.

1.1.4 Canonical class idioms

The multitude of constructs available in C++ to support object-oriented pro-
gramming may lead the reader to think that object-oriented programming is not
at all meant to reduce the complexity of programming but rather to increase
it, for the joy of programming so to speak. This impression is partly justified,
since the number and complexity of constructs is at first sight indeed slightly
bewildering. However, it is necessary to realize that each of the constructs
introduced (classes, constructors and destructors, protection mechanisms, type
conversion, overloading, virtual functions and dynamic binding) may in some
way be essential to support object-oriented programming in a type-safe, and
yet convenient, way. Having studied the mechanisms, the next step is to find
proper ways, recipes as it were, to use these mechanisms. What we need, in
the terminology of [Coplien92], are idioms, that is established ways of solving
particular problems with the mechanisms we have available. In his excellent book,
Coplien discusses a number of advanced C++ idioms for a variety of problem

Polymorphism 9

class counter { counter

public:
counter(int n = 0) : n(n) {

require(n ¿= 0);
promise(invariant()); // check initial state
}

virtual void operator ++() {
require(true); // empty pre-condition
hold(); // save the previous state
n += 1;

promise(n == old n + 1 && invariant());
}

int value() const { return n; } // no side effects

virtual bool invariant() { return value() ¿= 0; }

protected:
int n;
int old n;
virtual void hold() { old n = n; }
};

1-10

Slide 1-10: The counter contract

domains, including signal processing and symbolic computing. In this section, we
will look at the concrete class idiom for C++, which states the ingredients that
every class must have to behave as if it were a built-in type. Other idioms, in
particular an improved version of the handle/body or envelope/letter idiom that
may be used to separate interface from implementation, will be treated in the
next section.

Concrete data types in C++ A concrete data type is the realization of an
abstract data type. When a concrete data type is correctly implemented it must
satisfy the requirements imposed by the definition of the abstract data type it
realizes. These requirements specify what operations are defined for that type, and
also their effects. In principle, these requirements may be formally specified, but
in practice just an informal description is usually given. Apart from the demands
imposed by a more abstract view of the functionality of the type, a programmer
usually also wishes to meet other requirements, such as speed, efficiency in terms

10 Idioms and patterns

class bounded : public counter { bounded

public:
bounded(int b = MAXINT) : counter(0), max(b) {}
void operator ++() {

require(value() ¡ max); // to prevent overflow
counter::operator ++();
}

bool invariant() {
return value() ¡= max && counter::invariant();
}

private:
int max;
};

1-11

Slide 1-11: Refining the counter contract

of storage and error conditions, to prevent the removal of an item from an empty
stack, for example. The latter requirements may be characterized as requirements
imposed by implementation concerns, whereas the former generally result from
design considerations.

Canonical class in C++

• default constructor

• copy constructor

• destructor

• assignment

• operators

Abstract data types must be indistinguishable from built-in types

1-12

Slide 1-12: Canonical class

To verify whether a concrete data type meets the requirements imposed by
the specification of the abstract data type is quite straightforward, although
not always easy. However, the task of verifying whether a concrete data type
is optimally implemented is rather less well defined. To arrive at an optimal
implementation may involve a lot of skill and ingenuity, and in general it is
hard to decide whether the right choices have been made. Establishing trade-offs
and making choices, for better or worse, is a matter of experience, and crucially
depends upon the skill in handling the tools and mechanisms available. When

Idioms in hush 11

defining concrete data types, the list of requirements defining the canonical class
idiom given in slide ?? may be used as a check list to determine whether all
the necessary features of a class have been defined. Ultimately, the programmer
should strive to realize abstract data types in such a way that their behavior is in
some sense indistinguishable from the behavior of the built-in data types. Since
this may involve a lot of work, this need not be a primary aim in the first stages
of a software development project. But for class libraries to work properly, it is
simply essential.

1.2 Idioms in hush

The hush framework, developed by the author and his colleagues, aims at pro-
viding an easy-to-use and flexible, multi-paradigm environment for developing
distributed hypermedia and web-based applications. Actually hush, which stands
for hyper utility shell, is a part of the DejaVU framework which has been developed
at the Free University in Amsterdam over the last five years. The DejaVU
framework is meant as an umbrella for our research in object-oriented applications
and architectures. Many of the examples in this book are in some way derived
from hush or applications developed within the DejaVU project. The hush library
was originally developed in C++, but parts of it have been ported to Java using the
Java native runtime interface. You will see examples of hush in chapters ??, ??,
??, ?? and ??. In this section a brief overview will be given of the basic concepts
underlying hush. Then we will discuss the idioms used in realizing hush and its
extensions, in particular an adapted version of the handle/body idiom originally
introduced in [Coplien92], the virtual self-reference idioms and the dynamic role
switching idiom. At the end of this section we will discuss the implications
these idioms have for developing hush applications. Readers not interested in
hush may safely skip the introduction that follows and the discussion at the end
of this section. The hush framework is object-oriented in that it allows for a
component-wise approach to developing applications. Yet, in addition to object
class interfaces, it offers the opportunity to employ a script language, such as Tcl
and Prolog, to develop applications and prototypes. The hush framework is a
multi-paradigm framework, not only by supporting a multi-lingual approach, but
also by providing support for distributed client/server solutions in a transparent
(read CORBA) manner. In this section we will look at the idioms employed for
the realization of the framework. In developing hush we observed that there is a
tension between defining a clean object model and providing the flexibility needed
to support a multiparadigm approach. We resolved this tension by choosing to
differentiate between the object model (that is class interfaces) offered to the
average user of the framework and the object model offered to advanced users
and system-level developers. In this approach, idioms play a central role. We
achieved the desired flexibility by systematically employing a limited number
of basic idioms. We succeeded in hiding these idioms from the average user
of the framework. However, the simplicity of our original object model is only
apparent. Advanced or system-level developers who intend to define extensions to

12 Idioms and patterns

the framework must be well aware of the patterns underlying the basic concepts,
that is the functionality requirements of the classes involved, and the idioms
employed in realizing these requirements.

The hush framework – basic concepts

Application development generally encompasses a variety of programming tasks,
including system-level software development (for example for networking or multi-
media functionality), programming the user interface (including the definition of
screen layout and the responsivity of the interface widgets to user actions), and
the definition of (high-level) application-specific functionality. Each of these kinds
of tasks may require a different approach and possibly a different application
programming language. For example, the development of the user interface
is often more conveniently done using a scripting language, to avoid the wait-
ing times involved in compiling and linking. Similarly, defining knowledge-level
application-specific functionality may benefit from the use of a declarative or
logic programming language. In developing hush, we decided from the start to
support a multiparadigm approach to software development and consequently we
had to define the mutual interaction between the various language paradigms,
as for example the interaction between C++ and a scripting language, such as
Tcl. Current scripting languages, including Python and Tcl, provide facilities for
being embedded in C and C++, but extending these languages with functionality
defined in C or C++ and employing the language from within C/C++ is rather
cumbersome. The hush library offers a uniform interface to a number of script
languages and, in addition, it offers a variety of widgets and multimedia exten-
sions, which are accessible through any of the script interpreters as well as the
C++ interface.

These concepts are embodied in (pseudo) abstract classes that are realized by
employing idioms extending the handle/body idiom, as explained later on.

Basic hush classes

• session – to manage (parts of) the application

• kit – to provide access to the underlying system and interpreter

• handler – to bind C++ functionality to events

• event – stores information concerning user actions or system events

• widget – to display information on a screen

• item – represents an element of a widget

1-13

Slide 1-13: Basic hush classes

Programming a hush application requires the definition of an application class
derived from session to initialize the application and start the (window environ-
ment) main loop. In addition, one may bind Java or C+= handler objects to

Idioms in hush 13

script commands by invoking the kit::bind function. Handler objects are to be
considered an object realization of callback functions, with the advantage that
client data may be accessed in a type-secure way (that is either by resources
stored when creating the handler object or by information that is passed via
events). When invoked, a handler object receives a pointer to an event (that is,
either an X event or an event related to the evaluation of a script command).
Both the widget and (graphical) item class are derived from handler to allow for
declaring widgets and items to be their own handler.

Embedding script interpreters The hush framework offers a generic kit that
may be used as the interface to any embedded interpreter. The public interface
of the kit class looks as follows:

interface kit { kit

void eval(string cmd);
string result();

void bind(string name, handler h);
};

The function eval is used for evaluating (script) commands, and result may
be used to communicate data back. The limitation of this approach, obviously, is
that it is purely string based. In practice, however, this proves to be flexible and
sufficiently powerful. The bind function may be used to define new commands and
associate it with functionality defined in handler objects, which are introduced
below.

Handler objects The problem of extending the script language with func-
tionality defined by the application, is (as already indicated above) addressed
by defining a generic handler object class. Handler objects may be regarded
as a generalization of callback functions, in the sense that they are activated
whenever the corresponding script command is evaluated. The advantage of using
objects for callbacks instead of functions, obviously, is that we no longer need
type-insecure casts, or static or global variables to pass information around. The
public interface of the handler class looks as follows:

interface handler { handler

int dispatch(event e); // to dispatch events

int operator();
};

The dispatch function is called by the underlying system. The dispatch function
receives a pointer to an event which encodes the information relevant for that
particular callback. In its turn dispatch calls the operator() function. Classes
derived from handler need only redefine the operator() function. Information

14 Idioms and patterns

needed when activating a handler object must be provided when creating the
object, or obtained from the event for which the handler is activated. The use
of handler objects is closely connected to the paradigm of event-driven computa-
tion. An event, conceptually speaking, is an entity that is characterized by two
significant moments, the moment of its creation and the moment of its activation,
its occurrence. Naturally, an event may be activated multiple times and even
record a history of its activation, but the basic principle underlying the use of
events is that all the information that is needed is stored at creation time and,
subsequently, activation may proceed blindly. See section ??.

User actions Another use of handler objects (in hush) is for defining what must
be done in response to user events, resulting from actions such as moving the
mouse, or pressing a button, or selecting an entry from a menu. This is illustrated
by the public interface of the generic widget class:

interface widget : handler { widget

...
void bind(handler h);
void bind(string action, handler h);
...

};

The first member function bind may be used for installing a handler for the
default bindings of the widget, whereas the second bind function is to be used
for overriding any specific bindings. (Recall that the class widget is derived from
handler class to allow the widget to be its own handler. In this way inheritance or
the delegation to a separate handler object may be used to define the functionality
of a widget.) In addition to the widget class, the hush library also provides the
class item, representing graphical items. Graphical items, however, are to be
placed within a canvas widget, and may be tagged to allow for the groupwise
manipulation of a collection of items, as for example moving them in response to
dragging the mouse pointer.

Programmer-defined events User interface events occur in response to actions
by the user. They are scheduled by the underlying window system, which invokes
the handler whenever it is convenient or necessary. When getting used to event-
driven computation, system designers and programmers may feel the need to have
events at their disposal that may be scheduled at will, under the programmer’s
control. It will come as no surprise that another use of handler objects is to allow
for programmer-defined events. The public interface of the class event looks as
follows:

interface event : handler { event

operator();
};

Idioms in hush 15

Actual event classes are derived from the generic class event, and a scheduler
is provided to activate events at the appropriate time. (In effect, we provide a
fully functional discrete event simulation library, including facilities for generating
random distributions and analysing the outcome of experiments. Business process
simulations done with this library are discussed in Chapter 11.) Note that there is
an important difference between programmer-defined events and system-defined
events. System-defined events are delivered to the user by activating a handler
callback. In contrast, programmer-defined events are (directly) activated by a
scheduler. They contain, so to speak, their own handler.

Discussion What benefits do we derive from employing handler objects and
their derivatives? One advantage is that we have a uniform way to define the
functionality of script commands, callbacks to user actions and programmer-
controlled events. Another, less apparent advantage, is that it allows us to
incorporate a variety of functionality (including sound synthesis facilities, digital
video and active documents) in a relatively straightforward fashion.

1.2.1 The handle/body idiom

The handle/body class idiom, originally introduced in [Coplien92], separates the
class defining a component’s abstract interface (the handle class) from its hidden
implementation (the body class). All intelligence is located in the body, and
(most) requests to the handle object are delegated to its implementation. In
order to illustrate the idiom, we use the following class as a running example:

class A { A – naive

public A() { }

public void f1() { System.out.println(”A.f1”); f2(); }
public void f2() { System.out.println(”A.f2”); }
};

1-14

Slide 1-14: Running example

The implementation of A is straightforward and does not make use of the
handle/body idiom. A call to the f1() member function of A will print a message
and make a subsequent call to f2().

Without any modification in the behavior of A’s instances, it is possible to
re-implement A using the handle/body idiom. The member functions of class A
are implemented by its body, and A is reduced to a simple interface class:

Note that the implementation of A’s body can be completely hidden from the
application programmer. In fact, by declaring A to be the superclass of its body
class, even the existence of a body class can be hidden. If A is a class provided

16 Idioms and patterns

class A { A

public A() { body = new BodyOfA(this); }
protected A(int x) { }

public void f1() { body.f1(); }
public void f2() { body.f2(); }
public void f3() { System.out.println(”A.f3”); }

private A body;
};

1-15

Slide 1-15: Interface: A

by a shared library, new implementations of its body class can be plugged in,
without the need to recompile dependent applications:

class BodyOfA extends A { BodyOfA – naive

public BodyOfA() { super(911); }

public void f1() { System.out.println(”A.f1”); f2(); }
public void f2() { System.out.println(”A.f2”); }

};

1-16

Slide 1-16: Naive: BodyOfA

In this example, the application of the idiom has only two minor drawbacks.
First, in the implementation below, the main constructor of A makes an explicit
call to the constructor of its body class. As a result, A’s constructor needs to
be changed whenever an alternative implementation of the body is required. The
Abstract Factory pattern described in [GOF94] may be used to solve this problem
in a generic and elegant way. Another (aesthetic) problem is the need for the
dummy constructor to prevent a recursive chain of constructor calls. But the
major drawback of the handle/body idiom occurs when deriving a subclass of A
which partially redefines A’s virtual member functions. Consider this definition
of a derived class C:
Try to predict the output of a code fragment like:

The behavior of instances of C does indeed depend on whether the hidden
implementation of its base class A applies the handle/body idiom or not! If it
does, the output will be A.f1() A.f2(). because the indirect call to f2() in f1()

Idioms in hush 17

class C extends A { C

public void f2() { System.out.println(”C.f2”); }
};

1-17

Slide 1-17: Usage: C

C c = new C; c.f1();
1-18

Slide 1-18: Example: calling C

will (unexpectedly) not call the redefined version of f2(). The original definition
of A would of course yield A.f1() C.f2(). but this can only be obtained by
deriving C directly from the (hidden) body class.

Note that this is an illustration of one of the main drawbacks of the OOP
paradigm: the inability to change base classes at the top of a hierarchy without
introducing errors in derived classes.

Explicit invocation context In both implementations of A, the call to f2() in
f1() is an abbreviation of this.f2(). However, in the first, naive implementation
of A, the implicit this reference refers to the handle object (which can be an
instance of a derived class). In contrast, this in the BodyOfA will refer to the body
object. As a consequence, the body object is unable to make calls to functions
redefined by classes derived from the base class A.

We use the term invocation context to denote a reference to the context in
which the original request for a specific service is made, and represent this by a
pointer to the handle object. In other words, the handle object needs a pointer
to its body to be able to delegate its functionality, and, symmetrically, the body
needs a pointer to the handle in order to be able to use any redefined virtual
functions.

The body can be redefined as:
The new body class is aware of the fact that it is implementing services which

are accessed via the handle object. Consequently, it can use this information and
is able to make calls to functions which might be redefined by descendants of A.
Note that this solution does require some programming discipline: all (implicit)
references to the body object should be changed into a reference to the invocation
context. Fortunately, this discipline is only required in the body classes of the
implementation hierarchy.

Descendants of the handle classes in the public interface hierarchy can share
and redefine code implemented by the hidden body classes in a completely trans-
parent way, because all code sharing takes place indirectly, via the interface

18 Idioms and patterns

class BodyOfA extends A { BodyOfA

public BodyOfA(A h) { super(911); handle = h; }

public void f1() { System.out.println(”A.f1”); han-
dle.f2(); }

public void f2() { System.out.println(”A.f2”); }

A handle; // reference to invocation context
};

1-19

Slide 1-19: Handle/Body: BodyOfA

1-20

Slide 1-20: Separating interface hierarchy and implementation

provided by the handle classes. However, even other body classes will typically
share code via the handle classes. Also derived classes can use the handle/body
idiom, as depicted in slide ??.

1.2.2 Virtual self-reference

A special feature of the hush widget class library is its support for the definition of
new composite widgets, which provide to the application programmer the interface
of a built-in (or possibly other composite) widget. To realize this flexibility, we
introduced a self() function that adds another level of indirection to self-reference.
For example, look at the item class below:

Idioms in hush 19

class item { item

public item(String x) { name = x; self = null; }

String name() { return exists()?self().name(): name; }

public void redirect(item x) { self = x; }

boolean exists() { return self != null; }
public item self() { return exists()? self.self():this; }

item self;
String name;
};

1-21

Slide 1-21: Item with self()

The item class has an instance variable self, that can be set to an arbitrary
instance of item by invoking redirect. Now, when we ask for the name of the
item, it is checked whether a redirection exists. If so, the call is redirected to the
instance referenced by self(), otherwise the name of the item itself is returned.

public class go {

public static void main(String[] args) {
item a = new item(”a”);
item b = new item(”b”);
a.redirect(b);
System.out.println(a.name()); indeed, b

}

};

1-22

Slide 1-22: item: go

In combination with the handle/body idiom, we can create composites offering
the interface of item, providing access to one or more (inner) items. This will
be further illustrated in chapter 4. Those well-versed in design patterns will
recognize the Decorator patterns (as applied in the Interviews MonoGlyph class,
[Interviews]).

20 Idioms and patterns

1.2.3 Dynamic role-switching

For many applications, static type hierarchies do not provide the flexibility needed
to model dynamically changing roles. For example we may wish to consider a
person as an actor capable of various roles during his lifetime, some of which
may even coexist concurrently. The characteristic feature of the dynamic role
switching idiom underlying the actor pattern is that it allows us to regard a
particular entity from multiple perspectives and to see that the behavior of that
entity changes accordingly. We will look at a possible realization of the idiom
below. Taking our view of a person as an actor as a starting point, we need first
to establish the repertoire of possible behavior.

class actor { actor

public static final int Person = 0;
public static final int Student = 1;
public static final int Employer = 2;
public static final int Final = 3;

public void walk() { if (exists()) self().walk(); }
public void talk() { if (exists()) self().talk(); }
public void think() { if (exists()) self().think(); }
public void act() { if (exists()) self().act(); }

public boolean exists() { return false; }
public actor self() { return this; }

public void become(actor A) { }
public void become(int R) { }
};

1-23

Slide 1-23: actor.java

Apart from the repertoire of possible behavior, which consists of the ability to
walk, talk, think and act, an actor has the ability to establish its own identity (self)
and to check whether it exists as an actor, which is true only if it has become
another self. However, an actor is not able to assume a different role or to become
another self. We need a person for that! Next, we may wish to refine the behavior
of an actor for certain roles, such as for example the student and employer roles,
which are among the many roles a person can play.

Only a person has the ability to assume a different role or to assume a different
identity. Apart from becoming a Student or Employer, a person may for example
become an adult person and in that capacity again assume a variety of roles.

A person may check whether he exists as a Person, that is whether the Person
role differs from the person’s own identity. A person’s self may be characterized

Idioms in hush 21

class student extends actor { student

public void talk() { System.out.println(”OOP”); }
public void think() { System.out.println(”Z”); }
};

class employer extends actor { employer

public void talk() { System.out.println(”money”); }
public void act() { System.out.println(”business”); }
};

1-24

Slide 1-24: Students and Employers

as the actor belonging to the role the person is playing, taking a possible change
of identity into account.

When a person is created, his repertoire is still empty. Only when a person
changes identity by becoming a different actor (or person) or by assuming one
of his (fixed) roles, is he capable of displaying actual behavior. Assuming or
‘becoming’ a role results in creating a role instance if none exists and setting
the role instance variable to that particular role. When a person’s identity has
been changed, assuming a role affects the actor that replaced the person’s original
identity. (However, only a person can change roles!) The ability to become an
actor allows us to model the various phases of a person’s lifetime by different
classes, as illustrated by the adult class.

In the example code below we have a person talking while assuming different
roles. Note that the person’s identity may be restored by letting the person
become its original self.

The dynamic role switching idiom can be used in any situation where we wish
to change the functionality of an object dynamically. It may for example be used
to incorporate a variety of tools in a drawing editor, as illustrated in chapter 4.

1.2.4 The art of hush programming

For the average user, programming in hush amounts (in general) to instantiating
widgets and appropriate handler classes, or derived widget classes that define their
own handler. However, advanced users and system-level programmers developing
extensions are required to comply with the constraints resulting from the patterns
underlying the design of hush and the application of their associated idioms in the
realization of the library. The design of hush and its extensions can be understood
by a consideration of two basic patterns and their associated idioms, that is
the nested-component pattern (which allows for nesting components that have a
similar interface) and the actor pattern (which allows for attributing different
modes or roles to objects). The realizations of these patterns are based on
idioms that extend an improved version of the familiar handle/body idiom. Our

22 Idioms and patterns

improvement concerns the introduction of an explicit invocation context which
is needed to repair the disruption of the virtual function call mechanism caused
by the delegation to ‘body implementation’ objects. In this section, we will first
discuss the handle/body idiom and its improvement. Then we will discuss the
two basic patterns underlying the design of hush and we will briefly sketch their
realization by extensions of the (improved) handle/body idiom.

Invocation context The handle/body idiom is one of the most popular id-
ioms. It underlies several other idioms and patterns (e.g. the envelope/letter
idiom, [Coplien92]; the Bridge and Proxy patterns, [GOF94]).
However, despite the fact that it is well documented there seems to be a major flaw
in its realization. Its deficiency lies in the fact that the dynamic binding mecha-
nism is disrupted by introducing an additional level of indirection (by delegating
to the ‘body’ object), since it is not possible to make calls to member functions
which are refined by subclasses of the (visible) handle class in the implementation
of the (hidden) body class. We restored the working of the normal virtual
function mechanism by introducing the notion of explicit invocation context. In
this way, the handle/body idiom can be applied completely transparently, even
for programmers of subclasses of the handle. The (improved version of) the
idiom is frequently used in the hush class library. The widget library is build
of a stable interface hierarchy, offering several common GUI widgets classes like
buttons, menus and scrollbars. The widget (handle) classes are implemented
by a separate, hidden implementation hierarchy, which allows for changing the
implementation of the widget library, without the need to recompile dependent
applications. Additionally, the idiom helps us to ensure that the various widget
implementations are used in a consistent manner.

The nested component pattern The nested component pattern has been intro-
duced to support the development of compound widgets. It allows for (re)using
the script and C++ interface of possibly compound widgets, by employing explicit
redirection to an inner or primary component.

Inheritance is not always a suitable technique for code sharing and object
composition. A familiar example is the combination of a Text object and two
scrollbars into a ScrollableText object. In that case, most of the functionality of
ScrollableText will be equal to that of the Text object. This problem may be
dealt with by employing multiple inheritance. Using single inheritance, it may be
hard to inherit this functionality directly and add extra functionality by attaching
the scrollbars, especially when interface inheritance and implementation inheri-
tance coincide. The nested component pattern is closely related to the Decorator
pattern treated in [GOF94] and InterViews’ notion of MonoGlyph, [Interviews].
Additionally, by using explicit delegation it provides an alternative form of code
sharing to inheritance, as can be found in languages supporting prototypes or
exemplars, see section ??. The nested component pattern is realized by applying
the virtual self-reference idiom. Key to the implementation of that idiom is the
virtual self() member of a component. The self() member returns a reference to
the object itself (e.g. this in C++) by default, but returns the inner component

A catalogue of design patterns 23

if the outer object explicitly delegated its functionality by using the redirect()
method. Note that chasing for self() is recursive, that is (widget) components
can be nested to arbitrary depth. The self() member must be used to access the
functionality that may be realized by the inner component. The nested component
pattern is employed in designing the hush widget hierarchy. Every (compound)
widget can delegate part of its functionality to an inner component. It is common
practice to derive a compound widget from another widget by using interface
inheritance only, and to delegate functionality to an inner component by explicit
redirection.

The actor pattern The actor pattern provides a means to offer a multitude of
functional modes simultaneously. For example, a single kit object gives access to
multiple (embedded) script interpreters, as well as (possibly) a remote kit.

The characteristic feature of the actor pattern is that it allows us to regard a
particular entity as being attributed various roles or modes and that the behavior
of that entity changes accordingly. Changing roles or modes can be regarded as
some kind of state transition, and indeed the actor pattern (and its associated
dynamic role-switching idiom) is closely related to the State pattern treated
in [GOF94]. In both cases, a single object is used to access the current role
(or state) of a set of several role (or state) classes. In combination with the
virtual self-reference idiom, our realization of the actor pattern allows for changing
the role by installing a new actor. The realization of the actor pattern employs
the dynamic role-switching idiom, which is implemented by extending the handle
class with a set of several bodies instead of only one. To enable role-switching,
some kind of indexing is needed. Usually, a dictionary or a simple array of roles
will be sufficient. In the hush library the actor pattern is used to give access to
multiple interpreters via the same interface class (i.e. the kit class). The pattern
is essential in supporting the multi-paradigm nature of the DejaVU framework.
In our description of the design of the Web components in section ??, we will show
how dynamic role-switching is employed for using various network protocols via
the same (net)client class. The actor pattern is also used to define a (single) viewer
class that is capable of displaying documents of various MIME-types (including
SGML, HTML, VRML).

1.3 A catalogue of design patterns

Why patterns, you may wonder. Why patterns and why not a method of object-
oriented design and an introduction in one or more object-oriented languages?
The answer is simple. Patterns bookmark effective design. They fill the gap
between the almost infinite possibilities of object-oriented programming languages
and tools and the rigor of methodical design. As Brian Foote expressed it in [POPL3],
patterns are the footprints of design, paving the way for future designs. They
provide a common design vocabulary and are also helpful in documenting a
framework. And, as we will see later, patterns may also act as a target for

24 Idioms and patterns

redesign, that is when the current design no longer offers the desired functionality
and flexibility.

The Gang of Four book, Design Patterns by [GOF94], was immediately
recognized as an important contribution to object-oriented software development.
Not only because of the actual patterns presented, but also because of the style in
which they were presented, crisp problem-oriented descriptions of actual solutions
to real design problems, written with scientific rigor and accuracy. As Brian Foote
remarked, actual design became a legitimate subject of computer science research.
The pattern schema, or rather a simplified version thereof, is depicted in slide ??.
Each pattern must have a name, which acts as a handle in discussions about the
design. Being able to speak about specific pattern solutions, such as a factory,
greatly facilitates discussions about design.

Other important entries in the pattern schema are, the problem indicating what
the patterns is all about, the solution describing the general arrangment of the
classes and objects involved, and the consequences or tradeoffs that a particular
solution entails.

The actual patterns presented in [GOF94] are the result of the authors’
involvement in developing various GUI toolkits, in particular Interviews, [In-
terviews], and ET++, [ET], and applications such as, for example, interactive
text and image editors. In the course of developing a toolkit or application there
are many occasions for redesign. Reasons why you may need to redesign are listed
in slide ??, along with an appropriate selection of patterns from [GOF94].

Following [GOF94], we may distinguish between creational patterns that
govern the construction and management of objects, structural patterns that
define the static relationships between objects, and behavioral patterns that char-
acterize the dynamic aspects of the interaction between objects. In this sec-
tion we will look at a brief overview of the classification as originally presented
in [GOF94]. The patterns themselves will be treated only briefly. The reader
is invited to consult the original source and the many publications that fol-
lowed: [POPL1], [POPL2], [POPL3].

1.3.1 Creational patterns

Design for change means to defer commitment to particular object implemen-
tations as long as possible. Due to inheritance, or rather subtyping, the client,
calling a particular method, can choose the most abstract class, highest in the
hierarchy. However, when it comes to creating objects, there seems to be no
other choice than naming the implementation class explicitly. Wrong. Creational
patterns are meant to take care of that, that is to hide the actual class used as
far away as possible.

Creational patterns come in various flavors. In section 1.1.1 some example
realizations were presented. The factory class, for example, is a rather static way
of hiding the implementation classes. As an alternative, you may use a factory
method, similar to the instance method of the singleton class. If you prefer a
more dynamic approach, the prototype pattern might be better. A prototype is an
object that may be used to create copies or clones, in a similar way as instances

A catalogue of design patterns 25

are created from a class. However, cloning is much more dynamic, the more so
if delegation is used instead of inheritance to share resources with some ancestor
class. See section ??. The advantage of using a factory, or any of the other
creational patterns, is that exchanging product families becomes very easy. Just
look for example at the Java Swing library. Swing is supported under Unix,
Windows and MacOS. The key to multiple platform support is here, indeed, the
use of factories to create widgets. Factories are also essential when using CORBA,
simply because calling a constructor is of no use for creating objects on a remote
site.

1.3.2 Structural patterns

Objects rarely live in isolation. In slide ?? a selection of the structural patterns
treated in [GOF94] is collected. Structural patterns indicate how classes and
objects may be composed to form larger structures.

Structural patterns

• object and class composition

Pattern Alias Remarks
Composite part/whole collections of components
Flyweight handle/body extrinsic state, many objects
Adaptor wrapper resolve inconsistency between interfaces
Bridge handle/body relate abstraction to implementation
Decorator handle/body to introduce additional functionality
Facade handle/body provides unified interface
Proxy handle/body to defer ... remote, virtual, protection

Imagine, for example, an application for interactive text processing. Now,
the Composite pattern may be used to combine text, images and also compound
components, that may itself consist of other components. Closely related to the
Composite pattern is the Flyweight pattern, which is needed when the number of
components grows very large. In that case, the components themselves must
for obvious reasons carry as little information as possible. Context or state
information must then be passed as a parameter. To give some more exam-
ples, suppose there exists a nice library for formatting text and images, but
unfortunately with only a procedural interface. Then the Adaptor pattern may
be used to provide a interface that suits you, by wrapping the original library.
The Bridge pattern is in some sense related to the Factory. In order to work
with a platform-independent widget library, you need, as has been explained, a
factory to hide the creation of widgets, but you also need to bridge a hierarchy
of platform-dependent implementation classes to the more abstract platform-
independent widget set. When creating widgets to display text or images it may
be very inconvenient to create a separate class, for example when adding scrolling
functionality. The Decorator pattern allows you to insert additional functionality
without subclassing. Now think of a networked application, for example to be

26 Idioms and patterns

able to incorporate components that are delivered by a server. The library may
provide a number of networking classes that deal with all possible communication
protocols. To simplify access to these classes a Facade may be built, hiding the
complexity of the original class interfaces. Alternatively, remote components may
be available through a proxy. The Proxy pattern describes how access may be
regulated by an object that acts as a surrogate for the real object. Like composites
and decorators, proxies may be used for recursive composition. However, proxies
primarily regulate access, whereas decorators add responsibilities, and composites
represent structure.

1.3.3 Behavioral patterns

Our final category of patterns, behavioral patterns, concern the construction of
algorithms and the assignment of responsibilities to the objects that cooperate in
achieving some goal.

A first distinction can be made between patterns that involve the composition
of classes (using inheritance) and patterns that rely on object composition. As
an example of the Template Method pattern, think of a compiler class that offers
methods for scanning and the creation of a parse tree. Each of these methods may
be refined without affecting the structure of the compilation itself. An interpreter
allows for evaluating expressions, for example mathematical formula. Expressions
may be organised in a hierarchy. new kinds of expressions can be inserted simply
by filling in details of syntax and (semantic) evaluation. Object composition,
which employs the handle/body idiom and delegation, is employed in the Mediator
pattern, the Chain of Responsibility pattern and the Observer pattern. The actual
task, such as for example updating the display of information when the actual
information has changed, is delegated to a more specialized object, to achieve
a loose coupling between components. The difference between a mediator and
chain of responsibility is primarily the complexity of co-ordinating the tasks. For
example, changing the format of a single image component from one image type to
another image type may be done simply by using an image converter (mediator),
whereas exporting the complete document to a particular format such as HTML
may involve delegating control to a specialized converter that itself needs access
to the original components (chain of responsibility). We will discuss the Observer
pattern in more detail later.

A common characteristic of the patterns listed in slide ?? is that functional
behavior is realized as an object. Semantically, objects are more powerful than
functions, since objects can carry a state. Hence, the imperative objectify pays off
when we need functions that must know their invocation history. As an example
of the Command pattern, think of how you would realize insertion and deletion
commands in an interactive editor, with undo! Turning these commands into
an object in which the information necessary for undoing the command can
be stored, for example having a snapshot of the state stored in a Memento, it
suffices to stack the actual command objects. To undo a command, pop the stack
and invoke the undo method. The Strategy pattern may be used to hide the
details of the various layout algorithms that are available. For example, you may

Event-driven computation 27

use a straightforward algorithm that formats the text line by line, or you may
use the much more advanced formatting algorithm of TEX, which involves the
minimalization of penalties. These alternatives can be collected in a formatting
strategy hierarchy, that hides the implementation details from the client by a
common interface. When doing the formatting, you may wish to separate the
traversal of the component tree structure from the actual formatting operations.
This may be accomplished by employing the Visitor pattern. In general it is
recommended to abstract from the data structure and use a more abstract way,
such as an Iterator or Visitor to access and traverse it. The State pattern is similar
to the dynamic role switching idiom that has been discussed in section ??. As
an example, think of providing viewers for alternative document formats, such as
VRML or PDF, in your application. Using the State pattern, it suffices to have a
single viewer that changes itself according to the format of the document viewed.

The Observer pattern

The Observer pattern is a variant of the famous Model-View-Control (MVC)
pattern, that governed the creation of the graphical user interface of the Smalltalk
environment and many Smalltalk applications.

The basic idea is simple, to decouple information management and the display
of information. In other words, a distinction is made between the model or
subject, that carries the information, and the views or observers, that present
that information in some format. As a consequence, when a change occurs, the
viewers or observers have only to be notified to update their presentation. In
effect, MVC or the Observer pattern can be regarded as a simple method for
constraint propagation. An advantage is that unexpected updates can be easily
dealt with.

The objects involved in realizing the Observer pattern are depicted in slide
??. The subject object must allow for observers to be attached and detached.
Note that observers must also have a reference to the subject. In particular,
concrete observers must know how to obtain information about the state of the
subject, to be able to update their view. What the abstract subject and observer
classes supply are the facilities for attachment and mechanisms for notification
and updates. In the implementation of the Observer pattern there are a number
of problems and tradeoffs that must be considered. For example, do we allow one
observer to be attached to more than one subject? Do we allow for alternative up-
date semantics, for example observer-pull instead of subject-push? Do we provide
facilities for specifying aspects of interest, so that updates only need to concern
those aspects? And finally, how do we guarantee mutual consistency between
subjects and observers when we do allow for alternative update semantics?

1.4 Event-driven computation

Event-driven computation underlies many applications, ranging from graphical
user interfaces to systems for discrete event simulation and business process

28 Idioms and patterns

modeling. An important characteristic of event-driven computation is that control
is relinquished to an environment that waits for events to occur. Handler function
or handler objects are then invoked for an appropriate response. In this section
we will look at the Reactor pattern that explains the interaction between objects
and the environment. We will also look at an event system, in which the event
types are defined by the application programmer. In this application, events are
used to maintain global consistency, similar to the Observer pattern.

1.4.1 The Reactor pattern

The Reactor pattern has been introduced in [Schmidt95] as a general architecture
for event-driven systems. It explains how to register handlers for particular event
types, and how to activate handlers when events occur, even when events come
from multiple sources, in a single-threaded environment. In other words, the
reactor allows for the combination of multiple event-loops, without introducing
additional threads.

The abstract layout of the software architecture needed to realize the pattern
is depicted in slide ??. The reactor environment must allow for binding handlers
to particular types of events. In addition, it must be able to receive events, and
select a handler to which the event can be dispatched.

Events may be organized in a hierarchy. There are two possible choices here.
Either the topmost event class has a fat interface, containing all the methods
that an event may ever need to support, or the topmost event class can be lean,
so that additional methods need to be added by the subclasses of event. The
first solution is chosen for hush, because in C++ it is not possible to load new
classes dynamically. The latter solution is the way Java does it. In Java new
event types can be added at the reactor level without recompiling the system.
In the Java AWT and Swing libraries, handlers are called Listeners. Concrete
handlers, derived from an abstract handler, must provide a method, such as
operate(Event) that can be called by the reactor when the handler is selected
after receiving an event.

The interaction between the application, its handlers, the reactor and the
environment from which the events originate is depicted in slide ??. First, the
reactor must be initialized, then one or more handlers can be registered, providing
a binding for particular types of events. The reactor must then start to execute its
eventloop. When it receives an event from the environment, it selects a handler
and dispatches the event to that handler, by calling operate(Event).

Consequences Modularity is one of the advantages of an event-driven software
architecture. Handlers can be composed easily, since their invocation is controlled
by the reactor. Another advantage is the decoupling of application-independent
mechanisms from application-specific policies. In other words, handler objects
need not be aware of how events are dispatched. This is the responsibility of the
system or framework. The fact that control is handed over to the environment
has, however, also some disadvantages. First of all, as experience with student
assignments shows, it is difficult to learn in the beginning. But even when

Event-driven computation 29

mastered, applications may be hard to debug, since it is not always clear why
a particular handler was invoked, and because it may be difficult to repeat the
computation preceding the fault.

Applicability Some variant of the reactor pattern is used in Unix (X) Windows,
(MS) Windows, and also GUI libraries such as Interviews, ET++ and hush.
Another example is the Orbacus object request broker, that supports a reactor
mode for server objects, which allows for receiving messages from multiple sources
in a single thread. The Orbacus broker, however, also allows for multi-threaded
servers.

1.4.2 Abstract event systems

To conclude this chapter about idioms and patterns, we will look at a somewhat
more detailed example employing (user-defined) events to characterize and control
the interaction between the objects. The example is taken from [Henderson93].
The abstract system, or repertoire of statements indicating the functionality of
our application is depicted in slide ??.

First, we will define the functional behavior of the system (in this case a collec-
tion of thermometers that record and display temperature values, as characterized
above). Then we will introduce the user interface classes, respectively to update
the temperature value of a thermometer and to display its value. After that we
define a concrete event class (derived from an abstract event class) for each of the
possible kinds of interactions that may occur. Then, after installing the actual
objects comprising the system, we will define the dependencies between (actual)
events, so that we can guarantee that interactions with the user will not result in
an inconsistent state.

Functional behavior A thermometer must provide the means to store a tem-
perature value and allow for the changing and retrieving of this value. The
temperature values are assumed to be stored in degrees Kelvin.

class thermometer { thermometer

protected thermometer(float v) { temp = v; }

public void set(float v) { temp = v; }
public float get() { return temp; }

protected float temp;
};

Since only derived classes can use the protected constructor, no direct instances
of thermometer exist, so the class is abstract.

We will distinguish between two kinds of thermometers, measuring tempera-
tures respectively in centigrade and fahrenheit.

30 Idioms and patterns

class centigrade extends thermometer { centigrade

public centigrade() { super(0); }
public void set(float v) { temp = v + 273; }
public float get() { return temp - 273; }
};

The class centigrade redefines the methods get and set according to the mea-
surement in centigrade, and in a similar way we may define the class fahrenheit.

class fahrenheit extends thermometer { fahrenheit

public fahrenheit() { super(0); }
public void set(float v) { temp = (v - 32) * 5/9 + 273; }
public float get() { return temp * 9/5 + 32 - 273; }
};

Both the thermometer realization classes take care of performing the conver-
sions necessary to store and retrieve the absolute temperature value.

User interface We will define two simple interface classes, of which we omit
the implementation details. First, we define the interface of the displayer class,
needed to put values to the screen.

class displayer extends window { displayer

public displayer() { ... }
public void put(String s) { ... }
public void put(float f) { ... }
};

And secondly, we define a prompter class, which defines (in an abstract way)
how we may get a value from the user (or some other component of the system).

class prompter extends window { prompter

public prompter(String text) { ... }
public float get() { ... }
public String gets() { ... }
};

Together, the classes displayer and prompter define a rudimentary interface
which is sufficient to take care of many of the interactions between the user and
the system.

Events To define the interactions with the user (and their possible consequences)
we will employ events, that is instances of realizations of the abstract event class,
defined below.

Event-driven computation 31

abstract class event { event

pubic void dependent(event e) { ... }
pubic void process() { ... }
public void operator(); // abstract method

private event[] dep;
};

Since a simple event (for example, the modification of a value) may result
in a series of events (needed to keep the system in a consistent state), an event
object maintains a set of dependent events, which may be activated using the
process method. Further, each class derived from event is assumed to define the
application operator, that is the actual actions resulting from activating the event.

The first realization of the abstract event class is the update event class, which
corresponds to retrieving a new temperature value from the user.

class update extends event { update

public update(thermometer th, prompter p) {
th =th; p = p;
}

void operator()() {
th.set(p.get());

process();
}

thermometer th;
prompter p;
};

An update involves a thermometer and a prompter, which are stored when
creating the update event object. Activating an update event instance results in
retrieving a value from the prompter, setting the thermometer to this value and
activating the dependent events.

In a similar way, we define the second realization of the abstract event class,
the show event class, which corresponds to displaying the value of a thermometer.

class show extends event { show

public show(thermometer th, displayer d) {
th = th; d = d;
}

public void operator() {
d.put(th.get());

process();
}

32 Idioms and patterns

thermometer th;
displayer d;
};

Activating a show event instance results in retrieving a value from the ther-
mometer, putting that value on display and activating the events associated with
this event.

The installation The next step we must take is to install the application, that
is to create the objects comprising the functional behavior of the system, the user
interface objects and (finally) the various event objects.

thermometer c = new centigrade();
thermometer f = new fahrenheit();

displayer cd = new displayer(”centigrade”);
displayer fd = new displayer(”fahrenheit”);

prompter cp = new prompter(”enter centigrade value”);
prompter fp = new prompter(”enter fahrenheit value”);

show sc = new show(c,cd);
show sf = new show(f,fd);

update uc = new update(c,cp);
update uf = new update(f,fp);

Having created the objects, we are almost done. The most important and per-
haps difficult part is to define the appropriate dependencies between the respective
event objects.

uc.dependent(sc);
uc.dependent(sf);
uf.dependent(sc);
uf.dependent(sf);

As shown above, we declare the event of showing the value of the centigrade
thermometer (and also of the fahrenheit thermometer) to be dependent upon the
event of updating the value of the centigrade thermometer. And we repeat this
declaration for the event of updating the value of the fahrenheit thermometer.

We may now allow the user the choice between updating the centigrade or
fahrenheit thermometer temperature value, for example by inserting these events
in a menu, as indicated below

menu.insert(uc);
menu.insert(uf);

	Idioms and patterns
	Polymorphism
	Inheritance and delegation in Java

